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SUMMARY 

The entry  of  the  Viking  Lander  Capsule 1 into  the  predominantly-  carbon 
dioxide  atmosphere of Mars provided  the  first  opportunity  to  obtain  full-scale 
aerodynamic  flight  measurements  in  the  high-speed,  low-density  regime.  These 
data are  also of particular  scientific  importance  because of their potential 
impact on the  wavy  nature  of  the  Martian  upper-atmosphere  temperature  profile 
previously  deduced  from  wind-tunnel  aerodynamics  and  in-flight  acceleration 
measurements. Results are  presented  from  an  investigation  to  determine  the 
aerodynamics of the  Viking  Lander Capsule 1 principally  with  flight  measure- 
ments  from  pressure  instruments,  accelerometers,  and  a  mass  spectrometer. 
Included  is  a  detailed  examination  of  the  flight  data  and  the  processing  tech- 
niques  of  each  of  the  types  of  measurement  over  the  complete  spectrum  of  flight 
regimes  from  the  hypersonic  continuum  to  the  free  molecule  flow. In the  hyper- 
sonic  continuum,  combined  processing  of  pressure  and  acceleration  data  provided 
an  unambiguous  determination of the  aerodynamics.  Comparisons  of  these  aerody- 
namics  with  ground-based  ballistic-range  and CF4 wind-tunnel  continuum  coeffi- 
cients  are  made. The free-molecule-flow  drag  coefficient  was  solved  for  with 
an  indirect  technique  since  acceleration  noise  prevented  a  direct  solution. 
Theoretical  calculations  based  upon  molecular-beam  experimentation  in  the  free- 
molecule-flow  regime  are  applied to  assess  the  validity  of  the  value  obtained 
from  the  flight  data.  Experimental  data  for  spheres  were  scaled  and  used to 
define  the  drag  variation  in  the  slip-flow  regime  since  no  atmosphere  measure- 
ments  were  available  for  direct  calculations. This allowed  for  the  complete 
definition  of  the  drag  coefficient  in  the  rarefied-flow  regime. The flight- 
derived  drag  coefficient  was  used  to  calculate  the  atmosphere  structure  and 
results  are  compared  with  previously  determined  estimates. 

Caparison of the  flight-derived  drag  coefficients  with  ground-test  data 
generally  showed  good  agreement  in  the  hypersonic-continuum-flow  regime  except 
for Reynolds  numbers  from l o 5  to l o 3 ,  for  which  an  unaccountable  difference 
between  flight-  and  ground-test  data  of  about 8 percent  existed. The flight- 
derived  drag  coefficient  in  the  free-molecule-flow  regime  was  considerably 
larger  than  that  previously  calculated  with  classical  theory.  The  general 
character  of  the  previously  determined  temperature  profile  was  not  changed 
appreciably  by  the  results  of  this  investigation;  however,  a  slightly  more 
symmetrical  temperature  variation  at  the  highest  altitudes  was  obtained. 

INTRODUCTION 

Separate  groups  at  the Jet Propulsion  Laboratory (JPL), Ames  Research 
Center (ARC), and  Langley  Research  Center (LaRC!  analyzed  the first Viking 
lander  capsule  atmospheric  structure  and  trajectory  data  in  near  real  time 
for  the  purpose  of  atmospheric  certification. The ARC  initial  results  were 
formally  reported  (ref. 1) .  Although  comparisons  between  the  different  sets 
of  data  were  adequate  for  purposes  of  successfully  targeting  the  second  Viking 
lander  capsule,  a  striking  "waviness"  superimposed on a  near  isothermal  trend 



appeared  in  the  temperature  profile  above  altitudes of about 50 km  in all three 
separate  data  reductions.  Additional  analysis of the first lander  capsule  entry 
data  (ref. 2)  and  analysis of the  second  lander  data  (ref. 3)  indicated  the  same 
wavy  nature of the temperature  profile  above  about 50 km. Seiff and  Kirk's 
interpretation of these  waves as being due  to  diurnal  thermal tides,  analyzed 
for Mars by  Zurek  (ref. 4 )  and  for  Earth  by others (ref. 5) , is  the  prevailing 
explanation for  this  phenomenon.  However,  this  phenomenon  occurs at altitudes 
where  the  entry  vehicle  experiences  high  speeds  and  relatively  low  acceleration 
readings. In this  high-altitude  region,  wind-tunnel  aerodynamic  data  must  be 
used  with  the  acceleration  data  to  determine  temperatures. This fact  precipi- 
tated  a  lengthy  investigation  to  reexamine,  in detail,  the  region  from  about 
50 km to 130 km  to  see  if  the  previously  deduced  temperature  profile  could  be 
caused  by  flight-aerodynamics  phenomena  rather  than  by  actual  temperature  varia- 
tions in  the Martian  atmosphere.  The  initial  examination of the  data  indicated 
that  the  vehicle  aerodynamic  characteristics  might  be  extracted  solely  from  the 
flight  data.  If  this was  the  case,  then  not  only  could  the  atmospheric  data 
be  independently  verified,  but  it  would  provide the  first  flight-test  data on 
a  conical  blunt  body  in  a  nonair  medium. In order  to  accomplish  this  goal,  a 
different  approach  from  previous  investigations  in  the  data  reduction  process 
was  employed. This  approach  used  the  additional  measurements  of  stagnation 
pressure and  mass-spectrometer  number  densities  in  techniques  that  combined  them 
with  the  accelerometer  data  to  independently obtain  aerodynamic  force  coeffi- 
cients in  the  hypersonic-continuum-flow  and  the  free-molecule-flow  regime. 
Experimental  data  for  spheres  were  used  to  define  the  shape  of  the  drag  curve 
between  the  hypersonic-continuum-flow  and  the  free-molecule-flow regime, and 
an  iterative  procedure  was  used  to  fit  the  data  and  derive  a  complete,  smooth 
variation of drag  coefficient.  This process  resulted in aerodynamic  drag  data 
for  a 70° conical  blunt  body  from  the  hypersonic-continuum-flow  to  the  free- 
molecule-flow  regime.  These  data  were also used  to  calculate  the  atmospheric 
structure  for  Mars. The resulting  temperature  profile  is  compared  with  that 
previously  obtained.  This  paper  describes  the analyses and  presents  the  results 
of the  investigation  to  determine  the hypersonic-continuum/rarefied-flow aero- 
dynamics  and  atmospherics  from  the  Viking  Lander  Capsule 1 data. 

SYMBOLS 
3 
A acceleration  vector 

73 

AX,Ay,AZ components of A 

CA axial-force  coefficient 

CD drag  coefficient 

CL lift  coefficient 

CN normal-force  coefficient,  positive  in  the  positive  z-direction 

cP hypersonic  stagnation-pressure  coefficient, PS 

(1 /2) PWVW2 

2 



I 

d 

E 

gE 

K 

k 

L/D 

1 

M 

- 

m 

ut4 

NKn 

NO 

NRe 

Nref 

n 

"t 

P 

P 

9 

R 

r 

S 

+ 
X 

molecule  elastic-sphere  equivalent  diameter 

molecular  energy  flux 

Earth  gravitational  acceleration (93 = 9.087 m/s2) 

proportionality  constant  for  molecular-velocity  distribution 
1 aw 

Boltzmann' s constant 

lift-drag  force  ratio 

equivalent  elastic-sphere  mean  free  path 

Mach  number 

vehicle  mass 

mean  molecular  weight 

Knudsen  number 

Avogadro's  number,  6.0249 x 1 023 

Reynolds  number 

number  of  reemitted  molecules  per  unit  time 

measured  number  density 

total  number  density 

pressure 

angular  rate  about  the  x-axis 

angular  rate  about  the  y-axis 

gas  constant 

angular  rate  about  the  z-axis 

molecule-speed  ratio 

vehicle  reference  area 

temperature 

relative  velocity  of  vehicle 

vector location  with  respect  to  center of gravity 
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components of x + 

accommodation  coefficient 

partial  accommodation  coefficient 

acceleration  vector  produced  by  rotations  about  the  center  of 
gravity 

change  in  angular  orientation 

mean  molecular  energy 

total  angle  of  attack 

molecular-mass  ratio  (incident-to-surface  molecular  mass) 

exponent  for  angle  reflection  law 

mass  density 

angular  orientation 

tangential-momentum  accommodation  coefficient 

normal-momentum  accommodation  coefficient 

molecular-beam  half-angle  width 

angular  acceleration  matrix 

Subscripts : 

b  body axis 

C continuum  flow 

fm  free  molecule  flow 

i incident  molecule 

m  measurement 

0 maximum  value 

Plqrr  components  in  the  p-, q-, or r-directions 

Per  periodic  component 

ref  reemitted (or reflected)  molecule 

S stagnation 
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se secular  component 

W reflected  molecule  at  wall  temperature 

X component  along  x-axis 

43 free-stream  conditions 

A  dot  over  a symbol indicates  differentiation  with  respect to time. 

APPROACH 

An ideal  experiment  for  obtaining  the  aerodynamic-force  coefficients  from 
entry-flight  data  is one which  includes  simultaneous  measurements  of  acceler- 
ation and atmospheric  information,  primarily  measurements  of  density.  Under 
these  conditions,  the  product CAP, can be  unambiguously  separated  in  the 
following  equation: 

On the  Viking  lander  capsule,  particularly  in  the  rarefied-flow  flight  regimes, 
this  overlap  of  acceleration  and  atmospheric  measurements  did  not  occur.  Fig- 
ure 1 is a  sketch  of  the  approximate  useful  limits  of  each  of  the  three  princi- 
pal  measurements  relative  to  the  flow  regimes  used in  this  study. 

In the  hypersonic-continuum-flow  regime for which  both  stagnation  pressure 
and  accelerations  were  available,  the  aerodynamic  coefficients  were  determined 
directly  from  calculated  values of the  hypersonic  stagnation-pressure  coeffi- 
cient, which  varied  little  over  the  Mach  number  range  of  the  data. 

The acceleration  data  extended  well  into  the  slip-flow  flight  regime,  but 
it  did  not overlap  the mass-spectrometer  density  data.  Consequently,  a  direct 
determination of the  free-molecule-flow  aerodynamic  coefficient  was  not  possible. 
However, since  the  altitude  gap  between  the  acceleration-data  and  the  mass- 
spectrometer-data  limits  was  relatively  small  (approximately  20  km),  it  was 
possible  to  obtain  an  estimate  of  the  coefficient  by  establishing  a  continuity 
relation  between  the  two  sets  of  data  by  assuming an essentially  isothermal 
atmospheric  region  between  them. Upon  establishment of  a coefficient  value  from 
the  data,  free-molecule-flow  theories  were  applied  with  the  Viking  lander  cap- 
sule  configuration and  the  environment as measured. The flight-data  value was 
compared  with  the  theoretical  calculations  to  establish  its  reasonableness. 

The slip-flow  regime  contained  no  atmospheric  information  corresponding 
to  the  accelerometer  measurements,  and  the  gap  between  the  two  atmospheric 
measurements  was  fairly  large  (approximately 50 km). In this  regime,  the 
approach  taken  consisted of applying  a  scaled  drag-coefficient  variation 
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o b t a i n e d  for sphe res   i n   g round-based  test facil i t ies,  m a t c h i n g   b o t h   t h e  deter- 
mined   f ree-molecule- f low  drag   coef f ic ien t   va lue   and   the   hypersonic-cont inuum 
flow value .  An i t e r a t i v e   p r o c e d u r e  was then   used  t o  o b t a i n   t h e   b e s t   f i t   o f  a l l  
t h e  data over   the   whole   range  from the   con t inuum to t h e  free-molecule-flow 
regime. 

ENTRY-FLIGHT  SEQUENCE 

A t  8:31 GMT on  July  20,   1976,   the  Viking  Lander   Capsule  1 was s e p a r a t e d  
from t h e   V i k i n g  orbiter to  begin  its 18 200-km j o u r n e y  t o  t h e   s u r f a c e  of Mars. 
The onboard,  preprogrammed  sequence of events   which  is p e r t i n e n t  to  t h e   d i s c u s -  
s i o n s   o f   d a t a   p r o c e s s i n g   a n d  spacecraft o r i e n t a t i o n   f o r   t h e   d e s c e n t   p e r i o d  w i l l  
be b r i e f l y   r e v i e w e d .   F u r t h e r   d e t a i l s   c a n   b e   o b t a i n e d   f r o m   r e f e r e n c e   6 .   D e o r b i t  
b e g a n   a f t e r  a 4-min coast p e r i o d   f o l l o w i n g   s e p a r a t i o n .  A t  t h i s  time t h e   l a n d e r  
capsule   per formed a p rep rogrammed   o r i en ta t ion   maneuver   i n   p repa ra t ion  for a 
d e o r b i t   m a n e u v e r   w h i c h   c o n s i s t e d   o f   a n   i n e r t i a l l y   c o n t r o l l e d   e n g i n e   f i r i n g   o f  
t h e   r e a c t i o n   c o n t r o l   s y s t e m  (RCS).  The o b j e c t i v e  of t h i s  maneuver was to  
d e l i v e r   t h e   l a n d e r   c a p s u l e  t o  t h e   e n t r y   p o i n t   ( d e f i n e d  as 243 .8  km (800 000 f t )  
from t h e   s u r f a c e )   w i t h   t h e   p r e d e t e r m i n e d  proper e n t r y   t r a j e c t o r y  s t a t e ,  t h a t  is, 
a r e l a t i v e   v e l o c i t y  of 4.42 km/s and a r e l a t i v e   v e l o c i t y   p a t h   a n g l e  of -17.63O. 
A t  t h e   e n t r y   p o i n t ,   w h i c h  was de termined  by an  onboard  computer clock, t h e  
v e h i c l e  was o r i e n t e d  t o  its prede termined  trim a n g l e  of a t t a c k   o f  -11.1O i n  
p r e p a r a t i o n   f o r   e n t r y   i n t o   t h e   M a r t i a n   a t m o s p h e r e .   T h i s   a t t i t u d e  was main ta ined  
by t h e  RCS u n t i l  0.05gE were sensed ,  a t  which time t h e   v e h i c l e  was set  free to 
seek its n a t u r a l  trim a t t i t u d e   b u t  was c o n s t r a i n e d   i n   a t t i t u d e  ra te  change t o  
less t h a n  1 deg/s   by  the  onboard  navigat ion  ra te-damping  system.  This   0 .05gE 
a c c e l e r a t i o n  m a r k  i n i t i a t e d   t h e  f i r s t  phase   o f  a t h r e e - p h a s e   d e c e l e r a t i o n   e n t r y  
system  used to  s u c c e s s f u l l y   s o f t - l a n d   a n   i n s t r u m e n t e d   v e h i c l e   o n   t h e   p l a n e t ' s  
s u r f  ace. 

INSTRWNTATION AND WHICLE DESCRIPTION 

The l a n d e r   c a p s u l e   c o n t a i n e d   s e v e r a l   s c i e n t i f i c   i n s t r u m e n t s   w i t h   w h i c h  to  
ga the r   i n fo rma t ion   on   t he  properties of   the   Mar t ian   envi ronment  as t h e   l a n d e r  
t r ave r sed   t he   a tmosphe re .   F igu re  2 c o n t a i n s   d e t a i l e d   v i e w s  of the   Vik ing   Lander  
Capsule  1 a n d   t h e   r e l a t i v e   l o c a t i o n s   o f   t h e   v a r i o u s   i n s t r u m e n t s   c o n t a i n e d   w i t h i n .  
The a e r o s h e l l   s t r u c t u r e   c o n s i s t e d  of a 70° half-angle   cone  composed of a pheno- 
l i c  honeycomb material. T h i s   a b l a t i v e   s t r u c t u r e   c o n t a i n e d  two upper-atmosphere 
i n s t r u m e n t s   ( t h e   r e t a r d i n g   p o t e n t i a l   a n a l y z e r  (RPA) and  the  upper-atmosphere 
mass spec t rometer  (UAMS)), two lower -a tmosphe re   s ens ing   dev ices  ( a  tempera ture  
p robe   au tomat i ca l ly   dep loyed  a t  a v e l o c i t y  of 1.1 km/s and a s t a g n a t i o n - p r e s s u r e  
t r ansduce r ) ,   and   o the r   measu remen t   dev ices .   These   i nc luded   t he   h igh -a l t i t ude  
an tenna   and   fou r   p re s su re   t r ansduce r s ;   wh ich  were u s e d   i n   b o t h   t h e   r e c o n s t r u c -  
t i o n  of t h e   t r a j e c t o r y   a n d   t h e   p o s t f l i g h t   e n g i n e e r i n g   e v a l u a t i o n s .   T h e   i n e r t i a l  
r e f e r e n c e   u n i t  ( I R U ) ,  a package   wh ich   con ta ined   t h ree   p r inc ipa l - ax i s  accelerom- 
eters and  gyros,  a redundant  skewed gyro,   and a r e d u n d a n t   a x i a l  accelerometer, 
was mounted   on   the   hexagonal   f rame  of   the   l ander .   The   pro jec t ion  of t h e  loca- 
t i o n  of t h e  IRU i n t o   t h e  YZ-plane was about   (0 .3  m, -1 .O m) f r o m   t h e   c e n t e r  
of gravi ty ,   which  was a t  ( 0 ,  -0.046 m)  f r o m   t h e   a x i s  of symmetry.  The s e l e c t i o n  
o f   t h i s   c e n t e r   o f   g r a v i t y  away from the   ax is   o f   symmetry   p rovided  a nose-down 
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(-ll.lo) angle of attack and a positive l i f t  (L/D = 0.18). 'The assembled 3.5-m- 
diameter  lander  capsule weighed 980.8 kg a t   en t ry ,  and yaw and pitch were  con- 
t rol led by a crossed  array of eight  dual-operated 15.21-N (3.42-1b) thrusters.  
Roll was controlled by redundant  coupled pairs of identical   thrusters,   as shown 
i n  f igure 2. 

DATA PREPARATION 

Accelerometer and  Gyro Data 

The accelerometer  data  received on the  entry  into  the Martian  atmosphere 
of the Viking Lander Capsule 1 have been  examined i n  de t a i l  i n  order to  prepare 
records of aerodynamic-induced acceleration. T h i s  preparation  consisted of 
smoothing each channel w i t h  a moving cubic polynomial, removal of t h e  thrust- 
induced axial  input, and removal of biases  as determined j u s t  prior  to  sensing 
atmospheric effects.  Analysis of the  gyro  data  indicate  that  accelerations 
induced by angular  motions of the I R U  about  the  vehicle's  center of gravity  did 
not generate a s ignif icant  contamination  signal of the smooth aerodynamic accel- 
eration  records. The detailed  description of the  preparation  processes  for 
these  data is given i n  appendix A. 

Pressure Data 

The flight  stagnation-pressure  data used i n  the  determination of the 
hypersonic-continuum-flow aerodynamic coefficient has been prepared i n  a man- 
ner similar  to  the  accelerometer and gyro data. The preparation  consisted  of 
removing the  zero-shift, smoothing w i t h  a second-order  polynomial, and apply- 
i n g  minor corrections  to account for  low-density-orifice  effects. The sensor 
output  contained  dual  channels w i t h  resolutions of 0.15 and 0.81 millibar 
(1.0 bar = 100.0 kPa). An analysis of the  smaller  resolution  output channel 
w i t h  the  trajectory  provided an altitude  estimate of about 75 km as  the upper 
limit of useful  information from t h i s  sensor. A detailed  description of the 
data  preparation  process,  the  sensor  threshold  analysis, and the  data  record 
is given i n  appendix B. 

Mass-Spectrometer Data 

Unlike  the  preceding  data, no separate smoothing was applied  to  the 
reported  free-stream  neutral-species  concentrations. The preparation of the 
mass-spectrometer data from the  lander  entry  consisted mainly of calculating 
to t a l  mass density and mean molecular  weight of the atmosphere a t   the  upper 
a l t i tudes from about 128 t o  200 km. The lowest  five  data  points, from about 
128 t o  150 km, were of the most i n t e re s t  i n  attempting  to  extract  the  free- 
molecule-flaw aerodynamic coefficient  described  later. O f  these  data,  the 
lowest few data  points were i n  the  fringes of t he   s l i p f low regime based upon 
analysis of the  flow regimes described  later. Consequently, these few data 
points were slightly  biased toward values  higher  than  for  free-stream  condi- 
tions. A brief  description of the  data-acquisition  period, t h e  de t a i l s  of 
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the  calculations, and  the  table of results  from  the  data  are  presented in 
appendix C. 

ANALYSIS OF FLIGHT  DATA 

Trajectory  Parameters 

The  relative  velocity-altitude  profile of the  lander is given  in  figure 3. 
The velocity was  obtained  from  a  separate  analysis of  the  postflight  trajectory- 
reconstruction  process  (ref. 7). This process  primarily  involved  the  integra- 
tion  of  the  acceleration  records  and  use  of  the  available  redundant  measurement 
data  (e.g., altimeter,  terminal  descent  landing  radar,  and  the  landed-radio 
position-determination  results) as information  for  solving  the  initial-state 
conditions. This process  was  independent  of  atmospheric  properties  and  vehicle 
aerodynamics. The velocity  profile  presented was used  in  the  subsequent 
calculations. 

Also  included  in  figure 3 is the  approximate  average  free-stream  Mach 
number  variation  for  the  range of altitudes of this  investigation  (from  about 
30 to 150 km) . The average  atmospheric  temperature  and  a  constant  value  of  the 
ratio  of  specific  heat  of 1.3 were  used  in  the  calculation.  Above 80 km  the 
variation  is  considered  only  an  approximation  and  is  indicated  as  such  by a 
dashed  line. 

Entry Flow Regimes 

An  important  consideration  in  determining  the  aerodynamic  coefficients  of 
an  entry  vehicle  traveling  at  high speeds in a low-density  medium  is  the  deter- 
mination  of  the  flow  regime  in  which  the  vehicle  resides. An acceptable  class- 
ification  of  hypersonic  flight  regimes  is  that  proposed  in  references 8 and 9. 
The  boundaries  of  the flow regimes  are  usually  defined by  the  free-stream 
Knudsen  number, but  since the  Mach  number  undergoes  only  small  variations 
throughout  most  of  the  low-density-flow  regimes  for  an  entry  such as that  of 
the  Viking  lander  capsule,  it  is  possible  to  also  define  the  flow-regime  bound- 
aries  in  terms  of  free-stream  Reynolds  number,  as  given  by  Probstein  in  refer- 
ence 9. Thus, 

Figure 4 indicates  the  boundaries  of  the  various  flow  regimes  presented  in  terms 
of  both Knudsen number  and Reynolds  number  for  the  Viking  lander  capsule  entry. 
Also  presented  is a  typical  drag-coefficient  variation  as  a  function  of  these 
parameters  to  show  the  relative  magnitude  of  entry  vehicle  drag  in  the  various 
flow  regimes. The slip-flow  regime  defined  in  figure 4 is a  collection  of  other 
subdivided  flow  regimes  described by Probstein. The term "slip  flow"  refers  to 
the  fact  that  the  usual  continuum  assumption  of  zero  tangential  velocity  at  the 
vehicle  surface  does  not  apply  for  these  rarefied  flows.  For  this  investigation, 
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it is adequate  to  define  only  these  three  regimes  because of the  availability  of 
measurement data. 

Some knowledge of atmospheric  properties  was  required  in  order to estimate 
which  flow  regime  the  vehicle  was  in  at  various  altitudes. For the  Viking  lander 
capsule,  the  mass-spectrometer  data  provided  a  measure  of  the  number  densities 
of  various  atmospheric  species,  and  these  data  were  used  to  compute  the  equiva- 
lent elastic-sphere  mean free path  (ref. 10) through  the  relation 

where  n is the  measured  number  density  and  d  is  the  elastic-sphere  equiva- 
lent diameter  of  the  molecule  determined  experimentally  in  the  laboratory.  For 
C02, the  predominant  species  in  the  region  of  interest,  d = 4.59 x 1 0-8 cm. 
The results  of  the  calculation  of  mean  free  path  for  collisions  between C02 
molecules  are  shown in figure 5. Other  species  collisions  were  neglected  since 
their contributions  were  minimal  in  this  preliminary  estimate.  A  linear  regres- 
sion  extrapolation  with  the  last  four  mass-spectrometer  points  (shown by  the 
dashed  line  in  fig. 5) was  used  as  a  temporary  means  to  extend  the  data to lower 
altitudes. This was  not  entirely  unreasonable  since  earlier  analysis  indicated 
a  nearly  isothermal  temperature  region  at  these  altitudes.  As  shown  in  fig- 
ure 5, NKnfa, = 50 (corresponding  to  the  free-molecule-flow  boundary) occurs 
near  an altitude  of 140 km and  the  hypersonic-continuum-flow  boundary 
N K ~  (J 2 x begins  near  an  altitude  of 80 km. Hence, the  Viking  lander 
capsule  drag  coefficient  would  be  expected  to  undergo  a  significant  change 
(similar  to  that  shown  in  fig. 4) between  the  altitudes  of 140 and 80 km. 

Determination  of  Force  Coefficients 

Atmospheric  flight  data  from  high-speed  entry  vehicles  usually  prohibit 
completely  independent  measurements  of  ambient  atmospheric  conditions.  (Ambient 
conditions  are  disturbed by the  vehicle's  motion,  and  the  vehicle  is  the  mea- 
surement platform.) Thus, in  general,  the  product CDp, cannot be  directly 
separated  and  the  coefficient  solved  for  explicitly  in  the  aerodynamic-torce 
equation. However,  in this case it was  possible to  use  the  atmosphere-dependent 
measurement  data (e.g.,  mass-spectrometer  and pressure  data)  with  the  accelera- 
tion  and  trajectory  information so that  atmospheric  parameters  are  introduced 
indirectly  into  the  coefficient-extraction  process  with  an  iterative  scheme. 
Refinements  to  the  results  can  be  made by  iterating  between all the  elements  of 
the  problem. 

In order to  extract  all  the  usable  information  from  the  Viking  lander 
capsule  acceleration  measurements  it  was  necessary  to  estimate  drag  coefficients 
at  altitudes  up  to  about 100 km. However,  above 75 km,  the  flight  stagnation- 
pressure  data  were  not  sufficiently  accurate  to  allow  calculation  of  the  drag 
coefficient.  Accordingly,  the  following  general  approach  to  estimating  the 
drag-coefficient  variation  was used: 
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1. The hypersonic-continuum-flow drag  coefficient was calculated  (for 
a l t i tudes  up to  75 km) from t h e  flight  stagnation-pressure and acceleration 
measurements. 

2. From continuity between acceleration and mass-spectrometer data and  from 
examination of free-molecule-flow  theories, a value  for  the  free-molecule-flow 
drag coefficient was obtained  for  altitudes down t o  about 140  km. 

3. Previously  published  experimental  data on slip-flow  drag  coefficients 
for  spheres were used to  define  the  variation of the  drag  coefficient from i ts  
continuum value to  its free-molecule-flow  value. 

T h i s  procedure  provided t h e  complete drag  variation from the  hypersonic- 
continuum-flow regime in to  free-molecule-flow regime. The de ta i l s  of the 
process  for each  flow regime and the  resul ts  of the  calculations  for  the  overall 
drag  variations  are  discussed  separately. 

Hypersonic continuum flow.- The determination of t h e  body-axis aerodynamic- 
force  coefficients from the  acceleration and stagnation-pressure  data was  made 
from the  following  equations: 

The measured acceleration and pressure  data used i n  these  calculations were 
those  after  the aforementioned  preprocessing had  been applied  using b o t h  the 
high-range and low-range pressure measurements. The error  incurred by not 
including  the s ta t ic   pressure i n  the  equations was negligible since i t  was small 
i n  comparison to  the  stagnation  pressure. 

The pressure  coefficient used t o  determine  the  axial- and normal-force 
coefficients of the  lander  aeroshell was obtained from a combination of theoret- 
i ca l  and experimental  data. A t  a l t i tudes  below approximately 40 km, the shock 
layer over  the  aeroshell  forebody was expected to  be i n  chemical  equilibrium. 
Accordingly,  pressure  coefficients were  computed for a range of f l i gh t  condi- 
tions u s i n g  the computer  program of reference 11. I n  t h i s  calculation,  the 
Rankine-Hugoniot equations  across a normal shock were solved under the assump- 
tion of chemical equilibrium. A l l  s ignificant chemical species i n  the  Martian 
atmosphere and their  dissociation  products were included. The postshock  flow 
was brought to   res t   adiabat ical ly   to  compute the  stagnation  conditions  at  the 
vehicle  surface. For these  calculations,  the  composition of t h e  Martian atmo- 
sphere was taken to  be that  reported i n  reference 1 2 ,  approximately 95 percent 
carbon dioxide ( C O z ) ,  3 percent  nitrogen ( N 2 ) ,  and 2 percent Argon (Ar) by 
volume. A t  a l t i tudes between 26 and 4 0  km, where equilibrium flow prevailed, 
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t h e  pressure c o e f f i c i e n t  was found t o  b e   n e a r l y   c o n s t a n t  a t  a v a l u e  of approxi-  
mate ly  1.96. A t  a l t i t u d e s   a b o v e  4 0  km, e x p e r i m e n t a l   d a t a   o b t a i n e d   i n   t h e  
Langley  Expansion  Tube (ref.  13) i n d i c a t e d  a departure f rom  chemica l   equi l ibr ium.  
Th i s   depa r tu re   p roduced  a reduct ion   of   approximate ly  5 p e r c e n t   i n   t h e   p r e s s u r e  
c o e f f i c i e n t ,   w h i c h  was accounted for by an   approx ima te   co r rec t ion   based   on   t he  
data p r e s e n t e d   i n   r e f e r e n c e  1 3 .  T h e   r e s u l t i n g   v a r i a t i o n  of Cp w i t h   a l t i t u d e  
is p r e s e n t e d   i n   f i g u r e  6. T h i s   v a r i a t i o n   w i t h   a l t i t u d e  was e s t a b l i s h e d  by 
c o r r e l a t i n g   t h e   v a l u e s   o f  Cp wi th   dens i ty   ob ta ined   by   combin ing   t he  acceler- 
ometer d a t a   w i t h   a n   i n i t i a l  estimate of t h e   d r a g   c o e f f i c i e n t .  

A d d i t i o n a l   c a l c u l a t i o n s  were performed to  provide  the  wind-vector   aerody-  
n a m i c   c o e f f i c i e n t s .   T h e s e   i n c l u d e d   t h e   a p p l i c a t i o n  of t h e   f o l l o w i n g   e q u a t i o n s :  

where rl is the  t o t a l  a n g l e  of a t t a c k   a s   d e d u c e d   f r o m  t h e  g y r o   d a t a   i n  t h e  
t r a j e c t o r y   r e c o n s t r u c t i o n   p r o c e s s .  The   w ind-vec to r   fo rce   coe f f i c i en t s   ob ta ined  
i n  t h i s  manner a r e   p r e s e n t e d   i n   f i g u r e  7. The a n g l e  of a t t a c k   u s e d   i n   t h e  cal- 
c u l a t i o n s   a r e  also inc luded .  

F r e e  molecule flow.- A twofold approach was taken  t o  d e t e r m i n e   t h e  free- 
molecule-flow d r a g   c o e f f i c i e n t  of t h i s  e n t r y   v e h i c l e .  F i r s t ,  a c o n t i n u i t y  
a rgument   be tween  the   mass-spec t rometer   da ta   and   acce lera t ion   da ta  was e s t a b -  
l i shed ,   and   second,  t h e  drag  and l i f t  c o e f f i c i e n t s  were c a l c u l a t e d   u s i n g  free- 
molecule-flow t h e o r y  t o  r e i n f o r c e  t h e  v a l i d i t y  of t h e  f l i g h t - d a t a   v a l u e .  

C o n t i n u i t y  was es tab l i shed   be tween  dens i ty   ob ta ined   f rom  mass-spec t rometer  
da ta   and  from d e n s i t y   i n f e r r e d  from t h e  a c c e l e r o m e t e r s  t o  b r i d g e  t h e  20-km 
a l t i t u d e   g a p   b e t w e e n   t h e  two types   o f   da t a .  T h i s  r e q u i r e d  two assumptions.  
F i r s t ,  d e n s i t y ,   o n  a l o g a r i t h m i c   s c a l e ,  was assumed t o  v a r y   l i n e a r l y   w i t h  a l t i -  
tude .   That  is, under   mixed  a tmospheric   condi t ions  temperature  was assumed t o  
be isothermal .   Second,  it was assumed t h a t   t h e   v e l o c i t y   d i d   n o t   a p p r e c i a b l y  
c h a n g e   o v e r   t h i s   i n t e r v a l .  To t h e   f i r s t   o r d e r ,   t h e s e   a s s u m p t i o n s   w e r e   r e a s o n -  
a b l e   b a s e d  upon w o r k  r e p o r t e d  ear l ie r .  Then, from t h e  force e q u a t i o n ,  

p - c o n s t a n t ( 2 )  

or 



That  is, an  incremental  decrease  in CA would  produce  a  predictable  increase 
in  density  for  a  given  Ax.  Density-altitude  profiles  were  calculated  for 
various  assumed  values  of CA and  extrapolated into the  region  where  mass- 
spectrometer  data  existed  since,  as  stated  earlier,  a net  change  in CA was 
equivalent to  a  net  change  in p throughout  the  interval. The results  of  the 
calculations for constant  values of CA from 3.0 to 1.5 are  shown  in  figure 8. 
The  last four  mass-spectrometer  data  points  are also  shown  in  the  figure. 
Clearly  shown  is  the 20-km gap  between  the  two  data  types  for  which  the  accel- 
erometer  noise  prohibited  a  direct  coefficient  calculation  as  mentioned  earlier. 
A value  of 2.5 for  the  free-molecule-flow  axial  coefficient  could  fulfill  the 
requirement  of  density  continuity  and  thus  provide  the  merger  into  the 
hypersonic-continuum-flow  value  without  unduly  complicating  the  atmosphere 
structure. 

In addition  to  the  flight-data  analysis,  a  review of free-molecule-flow 
theory  was  carried out in  order to  define  the  range  of  free-molecule-flow  drag 
coefficients  that  can  be  believably  predicted  for  the  Viking  lander  aeroshell 
within  the  current  state  of  the  art. This review,  presented  in  appendix D, led 
to the  selection  of  the  theory of Hurlbut  and  Sherman  (ref. 1 4 1 ,  which  uses  the 
Nocilla  wall  reflection  model  (ref. 1 5 ) ,  as  a  realistic  description of the 
Viking  lander  capsule  flow  conditions. When this  theory  was  applied to the 
Viking  lander  capsule  aeroshell,  free-molecule-flow  drag  coefficients  ranging 
from  approximately 2.54 to 2.63 were  obtained  depending on the  value  chosen  for 
the  accommodation  coefficient. These values  are  significantly  higher  than  the 
value  of 2.20 which  corresponds  to  the  classical  fully  accommodated  diffuse- 
reflection model. In the  absence  of  valid  normal  acceleration data, an  approx- 
imate  value  of CD corresponding to the  extrapolated  flight  value  of CA 
was  deduced by  using  the theoretical  free-molecule  value C,/CA = 0.26 in  the 
preceding  body-to-wind-axis  transformation. The corresponding  value  of CD 
is 2.58. Based  upon  the  analysis  presented  in  appendix D and  the  preceding 
continuity  argument  with  the  data,  values of 2.50 to 2.70 were  selected  as  the 
most  probable  range  of  free-molecule-flow  drag  coefficients.  However,  it  is 
difficult  to  assign  a  meaningful  formal  uncertainty  value  to  this  range of 
coefficients,  although  the  data favors the  lower  value  corresponding  to  the 
diffuse-reflection  condition. 

Slip flow.- There  were  no  atmospheric  measurements  made on the  Viking 
lander  capsule  to  provide  a  direct  calculation  of  the  aerodynamics  in  the slip- 
flow  flight  regime. As reported  earlier,  the  hypersonic-continuum-flow  aerody- 
namics  were  determined  from  both  pressure  and  acceleration  measurements  to  an 
altitude  of  about 75 km. In the  free-molecule-flow  regime  (above  about 140 km), 
the  aerodynamic  coefficient  can  be  inferred  by  imposing  a  continuity  assumption 
between  mass-spectrometer  and  accelerometer  data.  Although  the  accelerometer 
data  appears  valid  (i. e. , not  too  noisy)  to  about 1 1 0 km,  no  corresponding 
atmospheric  measurements  were  available  to  uniquely  separate  the  product CAP, 
in  the  force  equations  at  these  altitudes. Thus, an  indirect  approach  was 
adopted to estimate  the  change  in  the  drag  coefficient  through  this  regime. 
In this  approach,  it  was  assumed  that  throughout  the  slip-flow  regime  the  drag- 
coefficient  trend  for  the  Viking  lander  capsule  aeroshell  was  similar to that 
reported  for  spheres. The particular  drag-coefficient  variation  used  was  that 
proposed  by Kinslow and  Potter  (ref. 16) .  This variation is presented  in 
dimensionless  form  in  figure 9 .  For  Reynolds  numbers  greater  than  about 50 the 
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variation  represents a curve f i t   t o  experimental  data  obtained a t  Mach numbers 
of approximately 11 and  low ra t ios  of wall  to  free-stream  stagnation  temperature. 
For Reynolds numbers l e s s  than 50 the  curve  resulted from a f i r s t -co l l i s ion  
theory  analysis  that was empirically  adjusted  to match the  available  experimental 
data. 

Overall  drag-coefficient  variation.- I n  general,  the  data  obtained  during 
the Viking lander  capsule  entry were not   suff ic ient   to  allow  the  independent 
determination of the aerodynamic coefficients and the  atmospheric  density 
throughout  the  entire  entry. For instance, the  application of the  sphere  drag 
coefficient i n  t he   s l i p f low regime required a determination of Reynolds number, 
which i n  turn  required a knowledge of t h e  free-stream  density.  Accordingly, an 
i te ra t ive  procedure was used to   a r r ive   a t  simultaneous  best-estimates of aero- 
shell aerodynamic coefficients and atmospheric-density  profiles. The i te ra t ion  
procedure was as  follows: 

1. An ini t ia l   es t imate  of the  atmospheric-density  profile was obtained by 
joining, i n  a smooth manner, the  high-altitude  (greater  than 128 km) mass- 
spectrometer  data w i t h  densities  calculated from the  accelerometer  data combined 
w i t h  a nominal hypersonic-continuumflow drag coefficient  derived from an 
average  of  the  wind-tunnel  values.  Corresponding prof i les  of atmospheric  pres- 
sure and temperature were obtained from integration of the  barometric  equation 
and the  application of the  perfect  gas law, respectively. With t h i s  atmospheric 
information, Reynolds number and Mach  number were calculated  as  functions of 
a l t i tude.  The gas properties  for  these  calculations were obtained from data 
i n  reference 17. 

2. T h i s  density-alt i tude  profile was used to   es tabl ish an in i t ia l   var ia t ion  
of the  previously  calculated  values of hypersonic  stagnation-pressure  coeffi- 
cient Cp w i t h  a l t i tude.  ( T h i s  s tep was included more for completeness rather 
than necessity  since  the  variation i n  Cp was l e s s  than 2 percent i n  the 
region  investigated). 

3 .  The hypersonic-continuum-flow  aerodynamic coefficients were calculated 
(for  al t i tudes up t o  approximately 75 km) from Cp and the measured stagnation- 
pressure and acceleration  data. 

4. The drag coefficient i n  the  slip-flow regime was obtained from figure 9. 
The ordinate on t h i s  f igure was normalized to  the  difference between the  free- 
molecule-flow and hypersonic-continuuflow  drag  coefficients  obtained  for 
spheres. The slip-flow  drag  coefficient is therefore  scaled  according  to  the 
values of the  drag  coefficient  at  either end of the Reynolds number range 
derived from step 1 and used as  the  abscissa i n  t h i s  figure. The free-molecule- 
flow drag  coefficient was f ixed  a t   e i ther  2.50 or 2.70 and remained so f o r   a l l  
i terat ions whereas the hypersonic-continuumflow drag  coefficient was adjusted 
for each i terat ion.  

5. The complete drag-coefficient  variation  obtained from steps 2 t o  4 was 
used to  deduce from the  accelerometer  data an  improved approximation t o  t h e  
density  profile below 110 km. 
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6. The  density  profile  from  step 5 was  joined  with  mass-spectrometer  data 
to  produce  an  improved  overall  density  profile. 

7. Atmospheric  pressure  and  temperature  profiles  corresponding  to  the 
density  profile  from  step 6 were  computed from  integration  of  the  barometric 
equation and application  of the perfect  gas law, respectively. 

8.  Steps  2 to 7  were  repeated  until  converged  values  for  the  drag  coeffi- 
cient and  the atmospheric  profiles  were  obtained. 

The resultant  overall  drag-coefficient  variation  is  presented  as  a  function 
of  altitude  in  figure 1 0  for  the  upper-bound  free-molecule-flow  drag  coefficient 
(i.e., CD = 2.70). Included on a  separate  graph  in  this  figure  is  the  varia- 
tion  of  free-stream  Reynolds  number  with  altitude. Also included on this  graph 
of  drag-coefficient  variation  is  the output of step 3 from  the  preceding  process 
after  the final iteration. The Reynolds  numbers  computed  from  the last five 
mass-spectrometer  data  values are included  for  interpolation  purposes  and  to 
identify  the flow  region  where  no  flight  data  exists. 

Figure 11  is a  graph  of  the  final  product  of  this  investigation,  that  is, 
a  description  of the complete  variation  of  the  drag  coefficient  with  free-stream 
Reynolds  number.  Essentially,  this  graph  contains  the  same  information  as  the 
two  graphs  in  figure 10. Included  in  the  figure  are  the  flow  regimes  and  the 
approximate  thresholds  (i.e.,  useful  limits)  of  the  data  used  to  determine  the 
drag-coefficient  variation  shown. These  are  shown  to  emphasize  the flow regimes 
for  which  special  steps  were  taken  to  provide  a  complete  description  of  the 
coefficient  variation, for instance,  the  slip-flow  regime. 

Comparison  With  Ground-Test Data 

Several  series  of  experimental  aerodynamic  tests  were  performed on the 
Viking  lander  capsule  aeroshell  configuration  prior  to  flight.  Besides  tests 
in air, which  consistently  produced  coefficients  about 5 to 1 0  percent  less  than 
nonair  tests,  real-gas  composition  effects  were  included  in  wind-tunnel  tests 
at  both LaRC and  ARC. The  LaRC  tests  (ref. 1 8 )  were  carried  out  at M, = 6 
and NRe,,, i~ 3 x l o 6  and  were  conducted  in CF4 to  more  closely  match  the 
expected  ratio  of  densities  across  the  shock  at  hypersonic-continuum-flow  flight 
conditions  typical  of  the  Viking  lander  capsule entry. The ARC  tests  (ref. 1 9 )  
were  conducted  in C02 at  the  ballistic-range  facility  which  has  a  capability 
of  projecting scale  models  at  speeds  equivalent  to  the  Viking  lander  capsule 
entry  speed of 4 . 5  km/s  and a  capability  of  making  drag  measurements  at  very 
low Reynolds  numbers  (in  the  hundreds). These data  provide  the  basis  for  com- 
parison  of the  wind-tunnel  and  ballistic-range  drag  coefficients  with  the 
flight-derived  drag  coefficients  discussed  in  the  previous  section.  Figure 1 2  
shows the  variation of flight-derived CD with  free-stream  Reynolds  number 
reproduced  from  figure 1 1  (solid  curve)  compared  with  the  aforementioned  ground- 
test  data. Also included  in  the figure is the  drag-coefficient  variation  used 
in the calculation  of  the  Martian  atmospheric  characteristics  reported  in  refer- 
ence 2 (dashed  curve). Direct  comparisons of drag-coefficient  data  with  the 
ballistic-range  data  greater  than a  Reynolds  number  of  about 1 x l o 5  (corre- 
sponding  to  an  altitude  of  about 60 km)  indicates  excellent  agreement,  that  is, 
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a d i f f e r e n c e  of less t h a n  2 p e r c e n t .  Above t h i s   a l t i t u d e  (as N R ~ , ~  d e c r e a s e s ) ,  
t h e   r e s u l t s  show a d i f f e r e n c e   o f   a b o u t  8 pe rcen t ,   wh ich  may be  regarded as 
acceptable c o n s i d e r i n g   t h e   e x p e r i m e n t a l   d i f f i c u l t i e s   i n   a c q u i r i n g   t h e   b a l l i s t i c -  
range data i n   t h i s   r e g i m e .  However, as shown i n   t h e   f i g u r e ,   t h e   a b r u p t   d r a g -  
c o e f f i c i e n t   c h a n g e   o b s e r v e d   i n   t h e   b a l l i s t i c - r a n g e  tests is n o t   o b s e r v e d   i n   t h e  
f l i g h t   d a t a .   I n i t i a l l y  it was p o s t u l a t e d   t h a t   t h i s   c o e f f i c i e n t   c h a n g e  was due 
to a l a m i n a r - t u r b u l e n t   t r a n s i t i o n   i n   t h e  wake  f l o w   ( r e f .  2 ) .  T h i s  is not   prob-  
able s i n c e  wake  p r e s s u r e   c h a n g e s  do n o t   s i g n i f i c a n t l y   i n f l u e n c e   d r a g  a t  t h e s e  
v e l o c i t i e s .   F u r t h e r ,  no  mechanism  immediately arises which allows t h i s   m a g n i t u d e  
of drag   change  to o c c u r   i n   t h e   f l i g h t  results.  A d d i t i o n a l   i n v e s t i g a t i o n  w i l l  be 
r e q u i r e d  t o  isolate  t h e  cause f o r   t h i s   d i f f e r e n c e .  However, e x c e p t   f o r   t h i s  
d i f f e r e n c e ,   t h e  hypersonic-continuumflow v a l u e s  of t h e   f l i g h t - d e r i v e d   d r a g  
c o e f f i c i e n t  are c o n s i s t e n t   w i t h  data  obta ined   f rom t h e  b a l l i s t i c - r a n g e   a n d  CF4 
wind-tunnel   data .  

Total a n g l e - o f - a t t a c k   c a l c u l a t i o n s   i n d i c a t e d   t h a t  t h e  o r i e n t a t i o n   o f  t h e  
v e h i c l e  to  t h e  flow was n o t  a t  a c o n s t a n t  11.1O. (See   f i g .   7 . )   Thus ,   t he   f l y -  
i n g   c o n d i t i o n s  of t h e   a c t u a l   v e h i c l e  were s l i g h t l y   d i f f e r e n t   f r o m   t h e   g r o u n d -  
tested condi t ions  compared  here .  These d i f f e r e n c e s   a r e   b e l i e v e d  to  be well 
w i t h i n   t h e  limits of   the   expec ted  error s i n c e  a l o  c h a n g e   i n   a n g l e  of a t t a c k  
produces   on ly   about  1 p e r c e n t   c h a n g e   i n   d r a g   c o e f f i c i e n t   i n  t h e  f l i g h t   r e g i m e  
under  study. 

The d i f f e r e n c e s   b e t w e e n  t h e  f l i g h t - d e r i v e d   c o e f f i c i e n t s   a n d  t h e  model used 
i n   r e f e r e n c e  2 can   be   seen  by compar ing   the  sol id  and dashed c u r v e s   i n   f i g -  
ure   12 .  The model o f   r e f e rence  2 relied d i r e c t l y  upon t h e   t u n n e l   o b s e r v a t i o n s  
and  assumed a f ree-molecule- f low  drag   coef f ic ien t   o f   2 .00 ,   which  is c o n s i d e r a b l y  
lower t h a n   t h e   v a l u e s   o f   2 . 5 0  to  2 . 7 0   d e r i v e d   i n  t h i s  i n v e s t i g a t i o n .  Also n o t e  
t h a t  t h e  d r a g   c o e f f i c i e n t   b e g i n s  to  change  f rom  the  f ree-molecule-f low  value 
a t  a Reynolds number of   about  5 i n   t h e   c u r r e n t   i n v e s t i g a t i o n   w h e r e a s  t h i s  change 
d i d  n o t   o c c u r   u n t i l  a Reynolds number of about  30 f o r  t h e  dashed  curve.  The 
d r a g - c o e f f i c i e n t   v a r i a t i o n  from r e f e r e n c e  2 th rough  the   s l ip - f low  reg ime is 
based o n   d r a g   d a t a  for s p h e r e s  'reported by Masson e t  a l .   ( r e f .  2 0 ) .  O f  course, 
these c o e f f i c i e n t   d i f f e r e n c e s  would produce d i f f e r e n c e s   i n  t h e  a tmospheric   prop-  
e r t ies  s i n c e  a t  t h e s e   a l t i t u d e s   a t m o s p h e r i c   p r o p e r t i e s  are i n f e r r e d   f r o m   i n t e r -  
p r e t a t i o n  of a c c e l e r a t i o n   m e a s u r e m e n t s   a n d   v e h i c l e   d r a g   c o e f f i c i e n t s .  

MARTIAN ATMOSPHERIC PROFILES 

The  atmospheric s ta te  v a r i a b l e s  were c a l c u l a t e d  by  t ransforming acceler- 
a t i o n   i n t o   d e n s i t y  w i t h  t h e   a e r o d y n a m i c   f o r c e   e q u a t i o n   g i v e n  by 

where CA is t h e   p r e v i o u s l y   d i s c u s s e d   f l i g h t - d e t e r m i n e d   a x i a l - f o r c e   c o e f f i c i e n t ,  
r a t h e r   t h a n   t h e   w i n d - t u n n e l  estimate. T h i s   r e s u l t e d   i n  a table  o f   dens i ty   ve r -  
s u s  time which ,   combined   w i th   t he   t r a j ec to ry - recons t ruc t ion   p rocess ,   p roduced  
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an a l t i tude   p rof i le  of density. Atmospheric pressure and temperature  profiles 
were calculated from integration of t h e  barometric  equation and application 
of the  perfect gas  law, respectively.  Application of t h e  aforementioned  aerody- 
namic variation ( w i t h  the  free-molecule-flow  drag  coefficient of 2.70) produced 
the  temperature  results shown i n  f igure 13 corresponding to  the  acceleration 
data. The corresponding d e n s i t y  and pressure  profiles  are  not shown since tem- 
perature,  the  ratio of these  variables,  presents a better  visual  display of t h e  
differences between these  calculations and the  resul ts  from reference 2. The 
integration method used to   calculate   these  resul ts  began w i t h  ini t ia l   condi t ions 
a t  about 38 km. T h i s  method  of integrating from lower to  higher  altitudes was 
done so that  the gap between about 130 t o  100 km was not  bridged. (Too much 
noise i n  the  accelerometry would possibly  influence lower atmosphere calcula- 
t ions.)  The starting  pressure was in i t i a l ly   s e l ec t ed  based on earlier  calcula- 
tions and i terated u n t i l  the  temperature  appeared t o  merge w i t h  the  temperature 
deduced from the mass spectrometry,  about 120 K a t  130 km. The e f fec t  of small 
errors i n  ini t ia l   pressure is not  observable i n  t h e  temperature  results  at low 
altitudes  since  the  pressure was relatively  large.  However, since a pressure 
error i n  the  init ial   conditions  propagates  l inearly upon integration of t h e  
barometric  equation,  large  temperature  errors were expected  for  altitudes where 
pressure is small. I n  t h i s  procedure, though, t h i s  error was readily removed 
by i te ra t ion ,  b u t  only to  the  extent  that  pressure was  known a t  t h e  higher 
alt i tudes.  

There are no major differences  a t  lower a l t i tudes  i n  the  general  trend of 
the  temperature  profile  determined i n  the  present  investigation compared w i t h  
that  of reference 2. T h i s  is not  surprising  since  the  flight-derived aerody- 
namic drag coefficients  agree  quite  well w i t h  wind-tunnel  drag as  discussed. 
However, i n  the  region above 70 km where significant  differences i n  aerody- 
namics exis t ,   the  temperature  determined by the  flight-derived  coefficients 
differs .  That is, a temperature  waviness more symmetric than earlier  estimates 
was produced. The flight-derived  coefficients produced two d i s t inc t  major 
temperature  bulges  (temperature  inversions) a t  64 and 84 km which a re  of about 
equal magnitude and are preceded by  two minor inversions  at  about 47 and 
77 km. 

Solving  for  the aerodynamic coeff ic ients  by using  stagnation-pressure and 
mass-spectrometer data w i t h  accelerometer  data  allows  for a unique method for 
determining  the  atmospheric  structure. Use  of the V i k i n g  lander  capsule  flight- 
derived  coefficients i n  regions beyond current ground t e s t s  produced a warmer 
temperature prof i le  merging into  the mass-spectrometer data. However, the 
general  trend of the existing  temperature  profile i s  not substantially changed 
( i .e . ,  a waviness  superimposed on a near-isothermal  sructure). Thus,  the  exist- 
ing complex atmospheric s t ructure  is not an a r t i f a c t  of the aerodynamics nor is 
it a product of the  data  processing methods. 

CONCLUSIONS 

Estimates of the V i k i n g  lander  capsule  aeroshell aerodynamic-force coeffi- 
cients from the hypersonic-continuum-flow to  the free-molecule-flow regimes have 
been obtained  through  techniques  that made use of the onboard accelerometer, 
pressure, and mass-spectrometer data. The stagnation-pressure and acceleration 
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measurements  combined  with a c a l c u l a t i o n  of t h e   p r e s s u r e   c o e f f i c i e n t  were used 
to d e t e r m i n e   t h e  hypersonic-continuumflow ae rodynamic - fo rce   coe f f i c i en t s .  

The f l i g h t - d e r i v e d   d r a g   c o e f f i c i e n t s   a g r e e d   w i t h i n  2 percen t   o f   g round- t e s t  
estimates o b t a i n e d  from b a l l i s t i c - r a n g e  tests i n  0 2  and  wind-tunnel tests i n  
CF4 for Reynolds   numbers   greater   than 1 x l o 5 .  A d e c r e a s e   i n   t h e   b a l l i s t i c -  
range   drag   coef f ic ien t   be tween  Reynolds   numbers   o f  l o 5  and  lo3  caused a d i f -  
f e r e n c e   b e t w e e n   f l i g h t - d e r i v e d   a n d   g r o u n d - t e s t   v a l u e s   i n   t h i s   r a n g e  of 8 p e r c e n t .  

The   f r ee -molecu le - f low  d rag   coe f f i c i en t  was determined  by a combined 
a n a l y s i s  of t h e  mass-spectrometer and accelerometer data (imposing a d e n s i t y  
c o n t i n u i t y   c o n s t r a i n t   b e t w e e n   t h e m )   a n d   t h e o r e t i c a l   c a l c u l a t i o n s   u s i n g   t h e  
t h e o r y  of Hurlbut   and  Sherman.   The  values   obtained  ranged  f rom 2 . 5 0  t o  2 . 7 0  
and were h i g h e r   t h a n   t h e  c lass ical  t h e o r e t i c a l   v a l u e   o f  2 . 2 0 .  N o  a tmospher ic  
measurements were o b t a i n e d   i n   t h e  slip-flow region   (be tween 85 and 135 km) and 
e x p e r i m e n t a l   s p h e r e  data were used to d e f i n e   t h e   d r a g   v a r i a t i o n   b e t w e e n   t h e  
hypersonic-continuum-flow  and  the  free-molecule-flow  regimes.  

T h e   t e c h n i q u e s   u s e d   i n  t h e  d e t e r m i n a t i o n  of the   V ik ing   l ande r   capsu le   ae ro -  
s h e l l   a e r o d y n a m i c - f o r c e   c o e f f i c i e n t s  were u n i q u e   i n  t h a t  t h e y  could p o t e n t i a l l y  
be  used to d e t e r m i n e   a t m o s p h e r i c   s r u c t u r e   w i t h o u t   t h e  u s e  of ground- tes t  aero- 
dynamic   da t a .   App l i ca t ion   o f  t h e  Vik ing   l ande r   f l i gh t -de r ived   ae rodynamic  
c o e f f i c i e n t s   p r o d u c e d   a t m o s p h e r i c   t e m p e r a t u r e   p r o f i l e s   o f  Mars s i m i l a r  to pre- 
v i o u s  estimates fo r   t he   r eg ions   where   f l i gh t   ae rodynamic   da t a   and   w ind- tunne l  
d a t a   a g r e e .  Use o f   t h e   f l i g h t - d e r i v e d   c o e f f i c i e n t s   i n   r e g i o n s  beyond c u r r e n t  
wind-tunnel t e s t  c o n d i t i o n s   p r o d u c e d   t e m p e r a t u r e s   d i f f e r e n t   t h a n  ear l ier  esti- 
mates (most n o t a b l y ,  warmer t e m p e r a t u r e s   m e r g i n g   i n t o  t h e  mass-spectrometer 
d a t a ) .  However, t h e   g e n e r a l   t r e n d  of t h e  e x i s t i n g   t e m p e r a t u r e - p r o f i l e   d a t a  was 
n o t   s u b s t a n t i a l l y   c h a n g e d  ( i . e . ,  a waviness  superimposed  on a n e a r  isothermal 
s t r u c t u r e ) .  

Langley   Research   Center  
Na t iona l   Aeronau t i c s   and   Space   Admin i s t r a t ion  
Hampton, VA 23665 
November 25,  1980 

17 



APPENDIX A 

ANALYSIS  OF THE FLIGHT ACCELEROMETER AND GYRO DATA 

The principal type of data  for  extracting  information from the high- 
alt i tude  portion of en t ry   f l igh t  is acceleration  data. A complete  record of 
its main  component, axial   acceleration, is shown i n  f igure A1 wherein the 
e f fec ts  of the  three  decelerating  systems mentioned previously  are observed. 
On the Viking  lander  capsule,  the  accelerometers were incorporated  into an 
i n e r t i a l  package w i t h  a t r iad  of gyros whose input  axes were aligned w i t h  the 
vehicle 's  body axis  depicted  previously. The accelerometer  sensors measured 
a change i n  velocity i n  a fixed time interval  produced by external  forces s u c h  
as aerodynamics  or thrusters.  Data were observed i n  quantized  velocity  incre- 
ments of 0.0127 m/s  for  the  axial  channel and 0.00317 m / s  for  the normal  and 
l a t e r a l  channels. The different  resolutions i n  the  nonaxial  channels were 
purposely  designed to  account for  the  relatively  small  size of the aerodynamic 
forces  anticipated  for a roll-controlled,  conical, symmetrical body f l y i n g   a t  
a low angle of attack. The sampling ra te  was 1 0  samples  per  second on each 
channel w i t h  an internal up-down 10-b i t  regis ter .  However, t h e  internal 
electronic  data-transfer package was designed to  preserve  information  internal 
to   the   iner t ia l  package. That is, sensor  acquisition was not  inhibited  during 
transfer of data  to  the  output  devices. The accelerometers  themselves were 
navigation-quality-type  sensors w i t h  an expected scale  factor of about 0.02 per- 
cent and a bias  uncertainty of about 100 x 10-6 gE. 

There are  several  steps i n  preparing  the  acceleration  flight-data  records 
for aerodynamic analysis and interpretat ion.   Since  interest   l ies  i n  a region 
w i t h  low signal, it is important to   b r ie f ly  review the major s teps  i n  t h i s  
process.  Attention w i l l  focus on the  axial  channel  since t h i s  was the  principal 
signal,  although  the  process to  be described i s  applicable  to  the  other two data 
channels. The chief  goal was to  produce instantaneous  center-of-gravity  accel- 
eration  records due t o  aerodynamic forces  only. The preliminary  step i n  achiev- 
ing t h i s  was to  provide "raw" acceleration  records by d i v i d i n g  the change i n  
velocity  output by 0.1 s a f te r  removal of signal  transmission  "blunder"  points. 
T h i s  scaling  process  provides  average  acceleration over 0.1 s. (The quantized 
pulses were internally summed over 0.02-s intervals  before  being  transmitted.) 
A time-smoothing process was then  applied  to  these  averaged  data which consisted 
of f i t t i n g ,  i n  a least-squares method, a variable  data  length moving polynomial. 
T h i s  scheme was selected because of the  following  advantages: I t  provided a 
s t a t i s t i c a l  average  accounting  for  the measurement data  noise; it accounted for 
averaging  the  internal  acceleration  buildup below the  quantization  level; and 
it  tended to  average  the  spurious  periodic component of angular  acceleration 
ir.duced by accelerometer  oscillations  about  the  center of gravity. The major 
items to  be selected w i t h  t h i s  preprocessing scheme are  the  length of interval 
of data  to be averaged and the  order of the polynomial t o  be used. I t  was found 
experimentally  that a cubic  polynomial w i t h  a variable-length  data  interval 
ranging from 100 points  for a low acceleration  reading  to 10 points   a t  maximum 
acceleration produced sat isfactory  resul ts ,   that  is, small  deviations between 
the  resultant  cubic and the  data. 
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Three problems were addressed   before   an   accura te   aerodynamics- induced  
a c c e l e r a t i o n  record could  be produced from t h e  raw data. These   cons i s t ed   o f  
removal of the   b i a s ,   r emova l  of t h e   c o n t r o l - j e t   t h r u s t e r - i n d u c e d   a c c e l e r a t i o n ,  
and  removal  of  the  nonperiodic  component of angu la r   i nduced   acce le ra t ion .   The  
f i r s t  problem, bias removal, was f i r s t  solved by t h e   V i k i n g   n a v i g a t i o n   e n t r y  
team for the   pu rpose  of upda t ing   t he   onboa rd   nav iga to r  prior to  e n t r y .   I n f l i g h t  
d a t a  were c o l l e c t e d  by t h i s  team prior to the   deo rb i t   maneuver .   These   da t a  were 
c a r e f u l l y   a n a l y z e d   a n d  provided c a l i b r a t i o n   v a l u e s   w h i c h  were u l t i m a t e l y   t r a n s -  
m i t t e d  t o  the  onboard  computer  t o  replace p r e v i o u s l y   s t o r e d   c o n s t a n t s .   T h e  
v a l u e   o b t a i n e d  for t h e   a x i a l  accelerometer was 0.01 142 m/s2 (0.03748 f t /s2).  
T o   o b t a i n   a s s u r a n c e   t h a t   t h i s   v a l u e   d i d   n o t   c h a n g e   a p p r e c i a b l y  af ter  d e o r b i t ,  
t h e  accelerometer biases were r e c a l c u l a t e d  for a q u i e s c e n t   p e r i o d   o f  time of 
60 s j u s t  prior to  o b s e r v i n g   t h e  effect o f   t he   a tmosphe re .   F igu re  A2 is a graph 
of t h e   r e s u l t s  of t h e s e   c a l c u l a t i o n s .   P a s s i n g   b o t h  a 200-point  and  100-point 
moving c u b i c   t h r o u g h   t h e  data F o d u c e d  biases of  0.00952 m / s 2  (0.031 24 ft/s2) 
and  0.00950 m/s2 (0.03118 f t / s  ) . T h e s e   b i a s   v a l u e s  were obta ined   by  a l i n e a r  
r e g r e s s i o n   a n a l y s i s  of t h e   s m o o t h e d   a c c e l e r a t i o n   p o i n t s   p r o d u c e d  by t h e  method 
p r e v i o u s l y   d e s c r i b e d .  N o  d e t e c t a b l e   s e c u l a r  term a p p e a r e d   i n   t h e   l i n e a r  f i t ,  
l e n d i n g  some credence  t o  t h e   c a l c u l a t i o n s .  The b i a s  t es t  i n d i c a t e d   t h a t   t h e  
b i a s  was  somewhat smaller (by a b o u t  200 x gE)  and  somewhat  of a l a r g e r  
d i f f e r e n c e   t h a n   a n t i c i p a t e d   s i n c e  a b i a s   c a l i b r a t i o n   d u r i n g   i n t e r p l a n e t a r y  
cruise  produced o n l y  a 20  x gE d i f f e r e n c e   w i t h   t h e   a f o r e m e n t i o n e d  
naviga t ion-ent ry- team  ca lcu la t ions .   Al though  the  resu l t s  o f   t h e   s t u d y   i n d i -  
c a t e d   r a t h e r   l a r g e   b i a s - e s t i m a t e   d i f f e r e n c e s   a n d  no a p p r e c i a b l e   c h a n g e s   i n   t h e  
v a l u e ,   t h e   s i g n i f i c a n c e  was i n   o b t a i n i n g   r e a l i s t i c  error e s t i m a t e s  of t h e   f i n a l  
r e s u l t s .  For example ,   the  smallest of t h e   d e v i a t i o n s   i n   t h e   b i a s   e s t i m a t e   w a s  
about   180 x gE. The approximate a l t i t u d e  a t  w h i c h   t h e   a c c e l e r a t i o n  
r e a c h e s  t h i s  v a l u e  was about   103 km; a t   t h i s   p o s i t i o n ,  t h e  measurement-bias 
u n c e r t a i n t y  is  about  equal to the   reading .   Consequent ly ,  it was expected t h a t  
l a r g e   b i a s  errors would r e s u l t   i n   a p p l i c a t i o n   o f   t h e s e   d a t a   a t  t h i s  a l t i t u d e  
and  above. 

The  second  problem t o  be c o n s i d e r e d  was the   removal  of t h e   c o n t r o l - j e t  
t h r u s t e r - i n d u c e d   a c c e l e r a t i o n .   T h i s  was a d i f f i c u l t y   o n l y   f o r   t h e   a x i a l   c h a n n e l  
s ince   nomina l ly   t he   p i t ch -   and   yaw-vec to r   t h rus t s  are or thogonal  t o  t h e   p l a n e  
o f   bo th   t he   l a t e ra l   and   no rma l   acce le romete r - inpu t   axes   whereas   t he  r o l l  
t h r u s t e r s  were comple te ly   coupled .   F igure  A3 is a s c h e m a t i c   o f   t h e   l o c a t i o n s  
of the  RCS t h r u s t e r s   w i t h  respect to the   l ande r   body-ax i s   sys t em  de f ined  by 
Xbr Y b r  and Zbr where   pos i t i ve   xb  is d i r e c t e d   t o w a r d  t h e  nose-cone  heat 
s h i e l d .  The appropriate l o c a t i o n   o f   t h e  IRU, which   conta ined  t h e  accelerometer 
t r i a d ,  is also shown i n  t h i s  f i gu re .   The   sys t em  o f   t h rus t e r s  was comple te ly  
redundant  for m i s s i o n   s a f e t y   a n d   r e q u i r e d   f i r i n g s   i n  pairs to  produce   p i tch-  
r a t e  q or yaw-rate r angular   mot ion .  Roll-rate angular   mot ions  p were 
induced by c o m p a r a b l e   s i m u l t a n e o u s   p u l s e   f i r i n g s   o f   c o u p l e d   p a i r s  of rol l  
t h r u s t e r s .  

As s e e n   i n   t h e   f i g u r e ,   t h e   d i r e c t i o n  of t h e   t h r u s t  i s  s u c h   t h a t  it is 
opposite t o  t h e   a e r o d y n a m i c   a x i a l  force. Thus ,   one   would   cons is ten t ly   under -  
estimate t h e   a x i a l   a e r o d y n a m i c  force i f   t h e   t h r u s t   i n f o r m a t i o n  were n o t  removed. 
T h e   i n f o r m a t i o n   t r a n s m i t t e d   i n   t h e   t e l e m e t r y   L i n k  to  aid i n   t h e   r e m o v a l  of t h e  
t h r u s t  from t h e   a x i a l  accelerometer records i n c l u d e d   t h e   c u m u l a t i v e  number of 
commands i s s u e d  t o  the   p i t ch -   and   yaw- th rus t e r  pairs over   each 0.2-s i n t e r v a l .  
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Using  nominal  vehicle  mass  and  thruster  performance  gave  an  induced  velocity 
increment  of  0.000622 m/s  (0.002040  ft/s)  for  each  command  to  the  thruster 
system. Thus, it  would  take  approximately 20 cumulative  commands  before an 
unwanted  quantum  pulse  would  register  in  the  X-accelerometer. It turned out 
that  the  thrust-induced  acceleration  had  compensating  features  over  the  entry- 
flight regime. That is,  during  very low  acceleration  readings  the  thrusters 
were  not  fired  very  much  to  control  the  vehicle's  attitude,  whereas  during 
higher  acceleration  inputs  the  thrusters  were  more  active.  Therefore,  there 
was  a  fairly  small,  constant-percentage-level  error  induced  by  the  thrusters. 
Effort  was  expended  to  remove  this  error  input  into  the  X-accelerometer  by 
applying  corrections  obtained  from  the  telemetered  command  information. 

The last  problem to be addressed  regarding  nonaerodynamic  inputs  into  the 
accelerometer  was  the  contribution  due  to  angular  accelerations of the  accel- 
erometer  package  about  the  vehicle  center of gravity.  Practicality  in  space- 
craft  design  prohibited  mounting  the  IRU  at  the  vehicle  center  of  gravity. In 
general, the correction for angular-acceleration  inputs  can be  expressed  as  the 
following  transformation: 

where s2 is a 3 by 3 matrix  composed of squares  of  angular  rates  and  angular- 
acceleration  terms  of  the  vehicle  about  the  center of gravity  and d is  the 
vector  location of the  aczelerometer  with  respect to the  center  of  gravity. 
For  the  Viking  Lander 1 X = (0.10196  m,  0.27719  m,  -1.01 140  m) . Thus, to 
obtain  center-of-gravity  accelerations  along  the  body  axis, Ab required  the 
following vector  addition: 

+ 

where  Am  is  the  measured  acceleration  at  location X. 
-+ + 

The correction  component  for  the  measured  axial  acceleration is written 
explicity  as 

AAx = 0.10196(q2 + r2) - 0.27719(pq - i) + 1.01140(pr + q )  (A3 1 

To obtain  a  semiquantitative  insight  into  the  nature  of this  correction,  assume 
momentarily  that  pitch  motion  is  predominant,  that  is, r = p = 0. Therefore, 

A A ~  = 0.10196q2 + 1.01140q (A41 

Note  that  the  second  term  is  about 10 times  larger  than  the first term due to 
lever-arm  differences.  Furthermore,  since  in  general  we  are  dealing  with 
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small  rates,  the  square of q  additionally  contributes  to  making  the  second 
term  larger  than 1 0  times  the  first term. Fortunately 4 is  cyclic  and,  as 
explained  earlier,  the  smoothing  process  tends  to  average  out  cyclic  inputs  into 
the  accelerometer. 

This simple'example, although  instructive,  is not the  entire.-picture  since, 
as  one  might  imagine  from  figure A3, a  pitch  maneuver  practically  always was 
accompanied  by  a yaw  motion  due to small  differences  in  thrust  level  and 
thruster-alignment  irregularities. Hence, the  complete  magnitude  of  this  spur- 
ious  input is complex  and  requires  additional  examination of the  angular  body 
motions  of  the  lander. 

The Viking  lander gyros were  strap-down,  navigation-type  quality  sensors 
which  required  similar  preprocessing as the  accelerometers.  Their  quantized 
output  measured  the  incremental  angular  change  in  the  vehicle  attitude  about 
three  body axes in  a  fixed  interval  of 0.1 s. The Viking  Lander 1 level  of 
quantization for  each  axis  was 

AOp = 8.0042 x 1 0-4 degJ 

where  the  direction  in  angular  change  is  indicated  by  the  subscripts q, r, 
and p and  the corresponding  rotational  axes  are  shown in figure A3. In 
general, the approximate  resolution  level for rates  about  the  three  body  axes 
was  about 10 times  the  quantization  level, or 0.008 deg/s. An  inflight  bias 
calibration €or the  gyros  was  also  performed  by  members  of  the  navigation  flight 
team. This provided  the  following  results: 

rb = -2 .4864 x 1 0-3 deg/s 1 
To date,  no  attempt  has  been  made  to  verify  these  bias  calculations  as  was  done 
with  the  accelerometer  data. The polynomial  smoothing  process  described  earlier 
for  the  accelerometer  data was  applied  to  the  gyro  flight  data  with  a  great  deal 
of  success. An additional  step was taken  to  provide  insight  into  the  angular 
acceleration  components .(i.e., 4, i, and h) by differentiating  the  resulting 
smooth  rate  curves  in  order  to  calculate d. 
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To conveniently  examine  the  spurious  inputs  into  the  axial  channel,  the 
correction  term  for  the  measured  axial  acceleration  (that  is, eq.  (A2)) can be 
separated  into  two parts. The nonperiodic  term  can be written  as 

LIAx,se = 0.10196(q2 + r2) - 0.27719~ + 1.01140pr 

whereas the periodic  term is 

*Ax,  per = 0.27719; + 1.01 1404 

After  the  aforementioned  preprocessing of the gyro,  the  magnitude  of each  of 
the components  of  the  angular  acceleration  into  the  axial  accelerometer  was  cal- 
culated.  The  results  are  shown  in  figure  A4. The expected  nonperiodic  nature 
and  complexity  of  the  correction  term bAXIse is  displayed  in  the  upper  graph 
of this  figure. These  mostly  positive  values  would  accumulate  in  the  acceler- 
ometer  system  to  yield  an  underestimate  of  the  true  acceleration if not  taken 
into  account.  This  underestimate of acceleration  would  produce  an  underestimate 
in  aerodynamic  coefficient. Fortunate1 on the  average,  this  contribution  was 
very  small,  much  less  than 5 x m/s3: A  constant  spurious  acceleration  of 
5 x m/s2  would require  over  250 s to  produce one pulse. This is  too  long 
to  be of  importance  when  compared  with  the  time  scale of the  entry. 

The lower  graph  in  figure  A4  (labled AA,,~~) displays the  expected 
periodic  contribution  to  the  axial channel. As discussed  in  the  previous  semi- 
quantitative  argument,  this  term  was  much  larger  than  the  nonperiodic  component. 
Here, for instance,  a  constant  acceleration of 7 x m/s2  would require  only 
about 1.8 s to  introduce  a pulse. But  because  of  the  periodic  nature'of  this 
component,  alternate  pulsing  would  take  place  which  was  readily  removed by most 
smoothing  schemes of a few seconds  length. Thus, over  the  hypersonic-continuum- 
flow  flight  regime,  the  location of the  Viking  lander  accelerometer  with  respect 
to  the  vehicle  center of gravity was not  a  significant  error  source  and  was 
accounted  for  by  the application of the  smoothing  process. 

22 



Entry 

I 

0 

1 
Mass-spectrometer P 

data  acquired \ 

2 4 6 

Time, min 

Figure A1.- Viking Lander Capsule 1 axial-acceleration data. 

8 

I 

h) 
W 



4 
!\ 

cu "" 

ul 
\ 
E 

x 
Q % 

2 2 
w 

- 200 p o i n t s  = 0.00952 m/s (+0.0018 m/s ) 2 
100 p o i n t s  = 0.00950 m/s2(+0.0046 m/s 2 ) E X 

P 

.005 

0 1  I I $ 1  I I I 
30 40 50 60 70 80 90 

Time from e n t r y ,  s 

Figure A2.- V i k i n g  Lander Capsule 1 axial-acceleration  bias  calculation. 



APPENDIX A 

\ 

'b 

\Ax 
\ 

i n t o  

Roll thrust  
( t y p i   c a I  , 4 n o z z l e s )  

IRU -7 

i n t o   p a p e r  & E l - + /  

'b 

/ 
/ 

/ 

%' 
\ 
\ Thrust i n t o   p a p e r  

( t y p i c a l  , 8 n o z z l e s )  

r 

'b 

F i g u r e  A3.- Loca t ions  of RCS t h r u s t e r s  and IRU w i t h  respect to 
v e h i c l e  body a x i s .  

25 



APPENDIX A 

6 x r 

t 
MaxAl  I I I 0.05gE 

-3 I I I I I I I 

s x  1c l i ’  

1 1 ’  t 
Max Ax 

.I I I I I I I I 
60 90 120 150 180 210 240 270 

Time from entry. s 

Figure A4.- Correction components of angular  acceleration  into  axial 
accelerometer  calculated from avro data. 

26 



APPENDIX B 

ANALYSIS OF PRESSURE DATA 

The l o c a t i o n  on t h e   a e r o s h e l l   o f   t h e   p r e s s u r e   s e n s o r   u s e d   i n   t h e   f o l l o w i n g  
a n a l y s i s  is shown i n  f i g u r e  2 as t h e   s t a g n a t i o n - p r e s s u r e   s e n s o r .  When t h e  
v e h i c l e  was p i t c h e d  down to  its trim f l y i n g   c o n d i t i o n ,   t h e   s e n s o r   o r i f i c e  was 
v e r y   n e a r   t h e   s t a g n a t i o n  point.  A d e s c r i p t i o n   o f   t h e   i n s t r u m e n t   a n d  its 
d e v e l o p m e n t   a n d   l a b o r a t o r y   c a l i b r a t i o n s   h a v e  been reported i n  d e t a i l  i n  ref- 
erence 21. S e v e r a l   p e r t i n e n t  areas o f   t h e   i n s t r u m e n t ' s   c a p a b i l i t i e s  w i l l  be 
b r i e f l y   r e v i e w e d   h e r e  for completeness .  

T h i s   s e n s o r   m e a s u r e d   p r e s s u r e s   b y   c h a n g e s   i n   c a p a c i t a n c e   p r o d u c e d   b y  
d e f l e c t i o n  of a t h i n   s t r e t c h e d   s t a i n l e s s - s t e e l   d i a p h r a g m   r e f e r e n c e d  to a vacuum 
chamber behind it. T h e   e l e c t r o n i c s  were a r r a n g e d  so t h a t   t h i s   u n i t   h a d  two out-  
p u t  ranges  nominal ly ,  0 to  150 m i l l i b a r s   a n d  0 t o  20 m i l l i b a r s .   Q u a n t i z e d  
samples were taken   every  0.2 s o v e r   t h e   r e g i o n   o f   i n t e r e s t   w i t h   a n  8-bi t  
te lemet ry-word   producing   nominal   p ressure-da ta   reso lu t ions   o f  about 0.60 and 
0 .08   mi l l i ba r   ove r   t he  t w o  r anges .   Ac tua l   subsys t em  e l ec t ron ic s   des ign  on t h e  
f u l l - r a n g e   s c a l e   g a v e  a r e s o l u t i o n   n e a r e r  t o  0.81 mill ibar,  whereas   the  smaller 
range was n e a r e r  to 0.15 mill ibar.  T h e   a c t u a l   c o l l e c t i o n  o f   s t agna t ion -p res su re -  
s e n s o r   d a t a   o v e r   t h e  two ranges  is shown i n   f i g u r e  B1. After c a l i b r a t i o n  data 
f rom  r e fe rence  21 were applied t o  the   measurements ,   they  were c o r r e c t e d  by 
removing  the  end-to-end  zero-shif t   caused by a combinat ion of s e n s o r   e f f e c t s ,  
s u c h  as ou tpu t   des ign   s ens i t i v i ty   and   minu te   changes   i n   d i aphragm  spac ing ,   and  
measurement   e f fec ts ,   such  as r a r e f i e d   o r i f i c e   f l o w .  Removal of t h e  z e r o - s h i f t  
( b i a s )  was accompl ished   by   examining   the   da ta   jus t  prior to  s e n s i n g   a p p r e c i a b l e  
atmosphere as d e f i n e d  by t h e   a c c e l e r a t i o n   d a t a .   F i g u r e  B2 shows t h e  resu l t s  of 
t h e   b r i e f   s t u d y  t o  remove t h e   z e r o - s h i f t .   T h e   r e s u l t s   a r e :  

High-range  zero-shif t  = 1.2454 m i l l i b a r s  

Low-range z e r o - s h i f t  = 1.3117 mill ibars 

T o  f u r t h e r  prepare t h e  pressure d a t a   b e f o r e   c o m b i n i n g   w i t h   t h e  accelerom- 
eter data, t h e   s m o o t h i n g   t e c h n i q u e   d e s c r i b e d   p r e v i o u s l y  was a l s o   a p p l i e d .  A 
second-order  polynomial w a s  adequate  for smooth ing   the   p ressure   da ta .   Dur ing  
t h e   h i g h - a l t i t u d e   f l i g h t   r e g i m e   ( a b o v e   a b o u t  50 k m )  t he   l ow- range   p re s su re  data 
were u s e d   i n   t h e   a e r o d y n a m i c   c a l c u l a t i o n s .  A t  50 km, the  low-range  channel  
s a tu ra t ed   and   h igh - range   da t a  were used   wi th  a r e l a t i v e l y  smooth t r a n s i t i o n  
occur r ing   be tween   t he  two ranges .  

T h e   t e l e m e t r y   r e s o l u t i o n  of t h e   l o w - r a n g e   p r e s s u r e   d a t a   l i m i t e d   t h e  
a l t i t u d e   f o r   m e a n i n g f u l   a e r o d y n a m i c   c a l c u l a t i o n s .   F i g u r e  B3 is a graph  of  par t  
of  the  smoothed  low-range pressure d a t a   i n  terms of d a t a - r e s o l u t i o n   e l e m e n t s  
( I  element  = 0 . 1 5   m i l l i b a r ) .  Also i n c l u d e d  a re  t h e   c o r r e s p o n d i n g   a l t i t u d e s  
f r m   t h e   t r a j e c t o r y - r e c o n s t r u c t i o n  process. A t  about   135  s from t h e   e n t r y  
p o i n t ,   t h e   m e a s u r e d   l e v e l  of p r e s s u r e  is e q u a l  to  t h e   t e l e m e t r y   r e s o l u t i o n ,  
wh ich   can   be   i n t e rp re t ed  as a 100-percent error i n   t h e  measured   pressure ,  
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whereas a t  150 s the  error i s  about 10 percent. T h i s  manner of interpreting 
measurement error is conservative  since  the smoothing process  provided  formal 
s t a t i s t i c s  which a re  somewhat smaller  than  those  implied by t h i s  figure, par- 
ticularly  during times when pressure was not  changing rapidly.  (That is, t h e  
same level  measured repeatedly produced a better  estimate of t h e  average.) A 
rough order  estimate of pressure-measurement errors  introduced  into  the subse- 
quent aerodynamic calculations was obtained from t h i s  analysis. For example, 
figure B3 indicates  that  the  errors  introduced by pressure-measurement uncer- 
ta inty would be larger than  about 25 percent above an a l t i tude  of about 76 km. 
T h i s  relationship between pressure-measurement errors and a l t i tude  is important 
for  limiting  the aerodynamic calculations  since an erroneous  interpretation 
could  occur. T h i s  happens because the limits of the  pressure measurement are  
near  the  onset of the s l i p f l o w  regime and calculations w i t h  t h i s  inaccurate 
data produce aerodynamic variations  similar  to what is expected when  moving into 
the slip-flow regime. 

Correction of t h e  pressure  data  to  account  for  low-density  "orifice 
effects" was carried  out by us ing  the  semiempirical  theory  presented by Potter 
e t   a l .   ( r e f .  22) and extended by Guy and Winebarger ( re f .  2 3 ) .  According t o  
these  references,  the  pressure measured under low-density-flow conditions is  
influenced by local  flow conditions and the aerodynamic heating  rate i n  the 
vicini ty  of the  pressure  orifice.  Application of the  orifice-effects  correc- 
tion  theory u s i n g  Viking conditions  resulted i n  a pressure  correction of a t  most 
about 3 percent of the measured value a t  about 76 km. Thus,  t h i s  effect  on the 
measurement error was considered  negligible compared w i t h  the  telemetry- 
resolution  errors mentioned previously.  Various  other  rarefied-flow  effects, 
s u c h  as  viscous  effects,  orifice-tube time lag,  and momentum mixing, were  con- 
sidered b u t  found to  be ins igni f icant   a t   the   a l t i tude   a t  which the  pressure  data 
were usable,  that is, below 84 km as shown i n  figure B3. 
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ANALYSIS OF MASS-SPECTROMETER DATA 

The  last  major  data  prepared  for  analysis  was  that  taken  by  the  Viking 
lander  upper  atmosphere mass  spectrometer (UAMS). Figure 2  shows  the relative 
location  of  this  instrument on the  aeroshell,  which  is  flush-mounted  to  the 
surface  with  a  4.45-cm  (1.75-in.)  orifice to  the  gas  stream.  This  experiment 
(ref. 1) provided  quantitative  in  situ  data on the  neutral  composition of the 
upper  atmosphere of Mars. The description  of  the  open-source,  double-focusing 
instrument,  the  calibration  technique,  and  expected  data  quality are documented 
in  reference 24. For the  application  of  these  data  to  the  experiment  described 
herein,  pertinent  features of the data  acquisition  and  preparation  required to 
obtain  atmospheric  mass  density  will  be  briefly  reviewed. 

The  acquisition  period of the  mass  spectrometer  data  is  shown  in  conjunc- 
tion  with  the  accelerometer  data  in  figure  Al.  For the  period  of  time  corre- 
sponding  to  the  altitude  range of 200  km  to  about  125  km,  the  vehicle  attitude 
was  at  an  angle  of  attack  of about -11.1O. This vehicle  attitude  was  held 
nearly  constant by the  onboard  navigation  system  as  mentioned  previously. The 
data  from  the  first  entry,  which  provided  altitude  profiles  of  number  densities 
of  four  major constituents - C02, N2, A,, and 02 - have  been  reported  in  ref- 
erence  12. The preparation  task  of  this  experiment was to  convert  these  data 
to  total  mass  density. This was  accomplished  for  each  altitude  with  the  follow- 
ing  calculations: 

nt = n  (02) + n(Ar) + n ((202) + n(N2) 7 

where  n(species) is the  measured  number  density  of  that  species. The mean 
molecular  weight A was  calculated  separately  to  obtain  total  atmospheric  pres- 
sure and  temperature. The expected  overall  accuracy  of  the  instrument  was on 
the  order  of 10 percent. As reported  in  reference 3 ,  the  calculation  of  total 
mass  density  incurred  additional  errors  when  minor  species,  and  particularly 
the  reactive  species  atomic oxygen,  were neglected. This type of error  became 
progressively  more  severe as altitude  increased. However,  as  seen in  the 
"Analysis of Flight  Data"  section,  the  particular  application of these  data  dealt 
with  altitudes  below  approximately 150 km. Consequently, the  error  induced  by 
not  including  the  minor  species  was  believed  to  be less than  the  level  of  accuracy 
of  the  calibrated  instrument  output.  For  example,  Hanson's  interpretation  of 
the  RPA  data  (ref.  25)  yielded  an  atomic-oxygen  number  density  of  5 x 108 mole- 
cules per cubic  centimeter  at an altitude  of  135 km which  contributed  about 
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0.01 3 x g / m 3  to  t h e  t o t a l  mass d e n s i t y .  A t  t h i s   a l t i t u d e ,   t h e  major 
a t m o s p h e r i c   c o n s t i t u e n t s   c o n t r i b u t e d  a b o u t  2.0  x g/cm3. Thus ,   neg lec t ing  
t h e   c o n t r i b u t i o n  of atomic oxygen  produced less than  a 1-percent  error i n  t h e  
m a s s - d e n s i t y   c a l c u l a t i o n .   I n   e s s e n c e ,   n e g l e c t i n g   t h e   c o n t r i b u t i o n s   o f   m i n o r  
species caused   an   underes t imat ion  of t o t a l  mass dens i ty ,   which   produced  an over-  
estimate of d r a g   c o e f f i c i e n t  for a g i v e n   a c c e l e r a t i o n .   T a b l e  I is a summary of 
t h e  results o f   t h e s e   c a l c u l a t i o n s .  

TABLE 1.- MASS-SPECTROMETER/MASS-DENSITY DATA 

A l t i t u d e ,  
km 

~ . . . . " .- . - - - - - - - 
1 2 8 . 0  
134.0 
139.5  
145.5  
151 .O 
163.0 
1 7 5 . 5  
182.0  
187.5  
194.0  
1 9 9 . 5  

__. "" . , . . . . .. " . - . . 

" 

Mean 
molecular 

weight  , 
g/g-mol 

43.61 
43.40 
43.21 
43.06 
42.78 
42.32 
41 .97 
41 .86 
41 .22  
40.06 
38.67 _ _ _  

Mass 
dens  i t y  , 

g/cm3 

5.83 x 
1 .97 x 
8.40 X 10-13 
4.46 X 10-13 
2.34 X 10-13 
7.96 X 10-14 
2.92 X 10-14 
1 . 5 5  x 10-14 
8.11 X 10-15 
4.40 X 10-15 
2.31 X 10-15 
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REVIEW AND APPLICATION  OF  FREE-MOLECULE-FLOW  MODEL 

In spite  of  the  fact  that  free  molecule  flow  has  been  the  subject  of  inten- 
sive  study,  the  determination of free-molecule-flow  drag  coefficients  is  still 
subject  to  considerable  uncertainty.  The  classical  approach,  as  exemplified 
by Schaaf and Chambre (ref. 26) , basically  summarizes  the  aerodynamic-force 
calculations for  the two  limiting  types  of  gas-molecule  surface  interactions: 
(1) A  specular  reflection  for  which  the  velocity  component  normal  to  the  sur- 
face  is  reversed  and  the  tangential  component  of  momentum of the  molecules  is 
unchanged,  and ( 2 )  a  diffuse  reemission  of  molecules  having  a  Maxwellian veloc- 
ity  distribution  corresponding  to  some  mean  reference  temperature  Tref. In 
this  classical  approach,  the  surface  interaction  is  typified  by  three  empirical 
constants a ,  0, and 0 ' .  Of these  three  constants,  the  best  known  is  the 
accommodation  coefficient a ,  which  represents  the  degree to which  the  incident 
molecules are accommodated to the  surface  temperature,  that  is, 

where E, is  the  energy  flux  the  reflected  molecules  would  have  if  they  had 
a  Maxwellian  distribution  corresponding  to Tw. The second  constant U may  be 
interpreted  as  the  fraction of the  incident  molecules  that  are  temporarily 
absorbed  and  then  reemitted  diffusely (or, alternately,  the  incident-molecule 
tangential-momentum  transfer  fraction). The third  constant (5' relates  the 
normal  pressure (or normal  momentum) on the  surface  due to reemitted  molecules 
Pref to  the  pressure on the  surface  from  incident  molecules Pi in  a  manner 
analogous to the  accommodation  equation,  that is, 

Pref = Pi + U'(PW - Pi) 

where Pw denotes  a  fictitious  pressure  which  would  be  exerted on the  surface 
if  the  molecules  were  reemitted  diffusely  with  a  mean  temperature  equal  to T,. 
Experimental  evaluation  of  these  constants  for  various  surface-material gas- 
molecule  combinations  has  proven to be exceedingly  difficult. In recent  years, 
there  has  been  a  growing  awareness  that  this  classical  model  cannot  adequately 
describe  the  actual  molecule-surface  interactions.  Accordingly,  free-molecule- 
flow  theories  have  been  developed  in  which  the  molecule-surface  interaction  has 
the characteristics  observed  in  molecular-beam  experiments  (refs. 27 and 28). 

Schamberg (ref. 29) proposed  a  model  in  which  the  reflected  molecules  are 
contained  in  a  conical  beam  of  half-angle  width $, having  a  direction  of 
reemission eref measured  from  the  vehicle  surface  to  the  axis  of  the  reflected 
beam. The  distribution of particles  within  the  beam is taken  to be  a cosine 
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distribution,  that  is, 

where Nref is  the  number of reemitted  molecules  per  unit  time  whose  directions 
of reemission  relative  to  the  beam  axis  lie  between @ and @ + d@. The term 
K is  a  proportionality  constant  dependent on the  molecule  reemission  distribu- 
tion  model. In the  Schamberg  model,  the  molecule-surface  interaction  is 
described  by  the  three  parameters 4 ,  V, and CY where @ is  the  half-angle 
of  the  reflected  molecular  beam  width, v relates  the  angle  of  reflection  to 
the  angle of incidence  through  the  expression 

cos eref = (cos  0i)V (V b 1) (D4 

and CY is  the  accommodation  coefficient,  which  relates  the  velocities  of  the 
reflected  and  incident  molecules  through  the  expression 

The incident  molecules  are  assumed  to  approach  the  surface  with  a  uniform  inci- 
dent  velocity  Vi  which  corresponds  to  a  kinetic  temperature Ti and  along 
a  direction  defined by ei. The  temperature Ti is  related  to  the  velocity 
Vi  through  the  relationship 

where  is  the  molecular  weight. The reflected  molecules  are  assumed to have 
a  uniform  reemission  velocity  Vref. 

Although  the  Schamberg  model  is  in  much  better  agreement  with  molecular- 
beam  data  than  the  classical  model,  the  assumption of uniform  reemission  veloc- 
ity  for  all  directions  is  not  realistic.  Hurlbut  and  Sherman  (ref. 14) replaced 
Schamberg's  uniform  velocity  assumption  with  the  Nocilla  wall  reflection  model 
(ref. 15) which  features  a  "drifting"  Maxwellian  distribution  function  for  the 
reemitted  molecules.  Using  experimental  results  as  a  guide,  Hurlbut  and  Sherman 
assume  a  dependence  of  accommodation  coefficient 122, angle  of  reflection O,,f, 
and  reemitted  molecule-speed ratio Sref on the  angle  of  incidence 8i as 
shown  in  figure Dl. Here,  the  accommodation  coefficient CY2 is  a  "partial" 
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accommodation  coefficient  defined as 

where  ci  is  the  mean  energy of particles in  the  incident  beam  and Eref and 
cW are  respectively  the  mean  energies  of  the  reflected  molecules  (taken  over 
the  entire  distribution  of  velocities)  and  of  gas  particles  scattered  in  a 
Maxwellian  reemission  from  a  wall at temperature Tw. The reemitted  molecule- 
speed  ratio Sref is  defined as, 

where  Vref is the macroscopic (or "drift")  velocity. In Hurlbut and  Sherman's 
analysis,  the  molecule-wall  interaction  can  be  defined  by  the  two  parameters 
~ 1 2 , ~  and  Sref,o. In the  limiting  cases  of  completely  diffuse or specular 
reflection,  both  the  Schamberg  and  the  Hurlbut  and  Sherman  analyses  reduce  to 
the  classical  result of Schaaf  and  Chambre for  the  values  of  the  parameters  in 
the  following  table: 

T 
Reflection 

Specular 

Diffuse 

I 

*For  all 

Parameter  values  for - 

Schaaf  and  Chambre 
analysis 

ei. 

Schamberg 
analysis 

V = l  

@ = O  

a = o  

Hurlbut and  Sherman 
analysis 

a2,o = 0 

v 

All  things  considered,  Hurlbut  and  Sherman's  analysis  appears  to  be one of  the 
most  realistic  development  models  to date. Experience  with  both  the  Schamberg 
and  the Hurlbut and Sherman  models has shown  that  the assumed  "width"  of  the 
reflected  beam  (as  prescribed  by 4) or  Sref)  has only a  relatively  small 
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(less  than 20 percent)  effect on the  calculated  drag  coefficient. The angle 
of  reflection eref (prescribed  by v in  the  Scharnberg  model) can  signifi- 
cantly  influence  the  calculated  drag  coefficient  but,  based on experimental 
data,  Hurlbut  and Sherman  assume  8ref = Bi. Hence,  the  major  uncertainty 
involved  in  calculating  a  free-molecule-flow  drag  coefficient  is  associated  with 
the  selection  of  the  accommodation  Coefficient.  Although  the  literature  con- 
tains  many  experimental  measurements,  obtained  prior  to 1960,  that show accom- 
modation  coefficients  close  to 1, a  careful  survey  of  these  data  showed  them 
to  be  untrustworthy  (ref. 3 0 ) .  Subsequent  studies  have  shown  that  a  wide  range 
of  accommodation  coefficients  are  possible  depending on the  gas-molecule  surface 
combination under consideration,  the  cleanliness  of  the  surface  (presence of 
adsorbed gas molecules),  the  velocity  and  direction  of  the  incident  beam,  and 
so forth.  Because of the  uncertainties  associated  with  experimentally  measured 
accommodation  coefficients,  several  investigators  have  carried out.theoretica1 
analyses. C o o k  (ref. 31) discussed  several  theories  'and  concluded  that  the 
true  value  for  the  accommodation  coefficient  probably  lies  between 

and 

where )J is  the ratio of the  mass  of  the  incident  gas  molecule  to  that  of a 
surface  atom.  Equation (D9) results  from  considering  a  head-on  collision of 
incident  molecules  and  surface  atoms  which  are  both  smooth,  hard  spheres. 
Equation (DlO) results  from  the  theory  of  Baule  (discussed  in  ref. 311, wherein 
the  surface  is  represented  by an oscillating  cubic  lattice,  the  energy  transfer 
is  determined  by  averaging  over  all  angles  of  incidence,  and  a single  collision 
between  hard spheres  is assumed. 

Opik (ref. 32) has also  calculated  average  values  of  accommodation  coeff i- 
cients  using  the  hard-sphere  model. He made  some  allowance  for  the  fact  that 
all impacts  are  not  head-on  collisions  and  computed  values  that  were  slightly 
less  than  those  given  by  equation (D9) .  Theoretical  calculations by Oman  et 
al.  (refs. 33 and 34) and  by Hurlbut (ref. 35) which  involved  realistic  three- 
dimensional  surface  lattices,  employed  Lennard-Jones  interaction  potentials, 
and  allowed  for  multiple  collisions  and  various  incidence  angles  have  yielded 
values  of c1 between  those  predicted  with  equations (D9) and (Dl 0). Further- 
more, these  calculations  showed  that  the  mean  value of the  accommodation  coef- 
ficient  averaged  over  all  directions 8,,f for a  given  angle  of  incidence 
8i was  maximum  for  normal  incidence  and  decreased  to  zero  at  grazing  incidence. 
This is  the  basis  for  the a 2  variation  assumed  by Hurlbut and Sherman and 
shown  in  figure D l  . 
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F o r   t h e   p r e s e n t   a p p l i c a t i o n ,   t h e   V i k i n g   l a n d e r   c a p s u l e   a e r o s h e l l  was 
covered   wi th   th in   a luminum  shee t ing   and   the   Mar t ian   a tmosphere  was composed 
of  about  97-percent C 0 2  a t  t h e   a l t i t u d e s   w h e r e   t h e   a e r o s h e l l   e x p e r i e n c e d  free 
molecule   f low.   Hence,   the   boundaries   of  1-: can  be  approximated by 

1.3 < Fc < 1 . 6  

where   the  lower bound follows t h e   s u g g e s t i o n  of Cook k h a t   t h e  outermost l a y e r ,  
assumed t o  be   chemiso rbed   oxygen ,   shou ld   be   u sed   i n   t he   ca l cu la t ions   o f  IJ. 
I n   a n y   e v e n t ,   t h e   v a l u e   o f  1-I is g r e a t e r   t h a n  1 . 0  and i t  is a n t i c i p a t e d   t h a t  
t h e   v a l u e   o f   t h e   a c c o m m o d a t i o n   c o e f f i c i e n t  is l a r g e .  The formal limits of t h e  
accommodat ion   coef f ic ien t  a t  1-I = 1 .O f rom  equa t ions  (D9)  and (DlO)  are from 
0.5 to 1 . 0 .  For P 5 1 . 0  l i t t l e  data e x i s t s ,   s i n c e   f o r  most E a r t h   a p p l i c a t i o n s  
t h i s   c o n d i t i o n   r a r e l y   e x i s t s .  However,  Opik, Oman e t  a l .  , a n d   o t h e r s   s u g g e s t  
t h a t   f o r  1-I near 1 . 0 ,  t h e   b o u n d s   f o r   t h e   a c c o m m o d a t i o n   c o e f f i c i e n t   c o u l d   b e   i n  
t h e   r a n g e  

a l though Oman e t  a l .   s u g g e s t s   t h a t  cx = 1 . 0  f o r  IJ >> 1 .  

I n   l i g h t   o f   t h e   f o r e g o i n g   d i s c u s s i o n ,   t h e   f r e e - m o l e c u l e - f l o w   t h e o r y  of 
Hurlbut  and  Sherman  with c12,0 ranging  from 0 . 9  to 1 . 0  was used to  p r e d i c t   t h e  
d r a g   c o e f f i c i e n t   f o r   t h e   V i k i n g   l a n d e r   c a p s u l e   a e r o s h e l l .   F o r   t h e   V i k i n g   l a n d e r  
capsule e n t r y   c o n d i t i o n s   t h e   a v e r a g e   v a l u e  of t h e   i n c i d e n t   f r e e - s t r e a m  molecule- 
speed r a t i o  is 

V a r i a t i o n s   o f  S a r e   a b o u t  ?3 w h i c h ,   f o r   t h e s e   l a r g e   v a l u e s ,  do n o t   s i g n i f i -  
c a n t l y   i n f l u e n c e   t h e   c a l c u l a t i o n s .   I n   a c c o r d a n c e   w i t h   H u r l b u t   a n d   S h e r m a n ,   f o r  
s > 1 0 ,  

and 
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RTw - = 0.001 
vm 2 -  

which 
equal 

cor responds  to a wall tempera ture  of about  110 K. T h i s  is approximate ly  
t o  t h e   c o l d e r   r a n g e  of the   a tmospher ic   t empera ture   which  l ies between 100 

and 200 K. (Doub l ing   t he  ra t io  value,   which  corresponds t o  t h e   l a r g e r   t e m p e r a -  
t u r e   v a l u e ,  affects t h e   c a l c u l a t i o n s  by less t h a n  1 p e r c e n t . )  The d r a g  coeffi- 
c i e n t   r e s u l t i n g  from t h e   c a l c u l a t i o n s   w i t h   t h e   H u r l b u t   a n d   S h e r m a n   t h e o r y  i s  
p r e s e n t e d  as a f u n c t i o n  of v e h i c l e   a n g l e   o f   a t t a c k   i n   f i g u r e  D2. A l s o  shown for 
comparison  purposes are t h e   l i m i t i n g  case of c o m p l e t e l y   s p e c u l a r   r e f l e c t i o n   a n d  
the   midrange   va lue  of the   accommodat ion   coef f ic ien t .  As can   be   seen   f rom  f ig-  
u r e  D2, t h e   r a n g e  of d r a g   c o e f f i c i e n t s   c a l c u l a t e d   w i t h   t h e   H u r l b u t   a n d   S h e r m a n  
model   (us ing   the  parameter c h o s e n   i n   t h e   p r e c e d i n g   d i s c u s s i o n )  is 2.54 t o  2.63 
f o r   t h e   v e h i c l e  a t t i tude ,  which is f i x e d  by the   onboa rd   nav iga t ion   sys t em.  
P l a c e d   o n   t h e   f i g u r e  is t h e   v a l u e   o b t a i n e d   f r o m   t h e   a n a l y s i s   w i t h   t h e  accelerom- 
eter and mass-spectrometer d a t a  ( i .e . ,  CD = 2 . 5 5 ) .   C l e a r l y ,   t h i s   i n d e p e n d e n t  
method  produces a d r a g   c o e f f i c i e n t   w h i c h  is i n  t h e  r a n g e   o f   t h e   a n t i c i p a t e d  
va lues .  However, t h e  method used to o b t a i n   t h i s '   f l i g h t   v a l u e   r e q u i r e d   i n t e r -  
po la t ion   and   ce r t a in   a s sumpt ions   wh ich  may prove t o  be   fo r tu i tous .   Consequen t ly ,  
conservat ive  values   ranging  f rom  2.50 to 2.70 were chosen €or t h e  free-molecule- 
f l o w   d r a g   c o e f f i c i e n t .   T h e s e   v a l u e s   a r e   s i g n i f i c a n t l y   h i g h e r   t h a n   t h e   v a l u e  
cor responding  to the   w ide ly   u sed  c lass ical  d i f f u s e  limit of 2.20. 
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Figure Dl.- Dependence on incidence angle 8i of accommodation coefficient, speed 
ratio of reflected molecules, and angle of reflection @ref  used  in present 
investigation. 
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Capsule 1 measurements  and  flaw  regimes. 
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